Home
Class 12
PHYSICS
The speed (v) and time (t) for an object...

The speed (v) and time (t) for an object moving along straight line are related as `t^(2)+100=2vt` where v is in meter/second and t is in second. Find the possible positive values of v.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The speed (v) and time (t) for an object moving along straight line area related as t^(2) + 100= 2vt where v is in meter/second and t is second. Find the possible positive values of v.

The speed (v) and time (t) for an object moving along straight line are related as t^(2)+400=4vt where v is in meter/second and t is in second. Find the possible positive values of v.

The speed(v) of a particle moving along a straight line is given by v=(t^(2)+3t-4 where v is in m/s and t in seconds. Find time t at which the particle will momentarily come to rest.

The velocity v of a body moving along a straight line varies with time t as v=2t^(2)e^(-t) , where v is in m/s and t is in second. The acceleration of body is zero at t =

The position of object moving along an x-axis is given by x=3t-4t^(2)+t^(3) , where x is in meters and t in seconds. Find the position of the object at the following values of t : (i) 2s, (ii) 4s, (iii) What is the object's displacement between t = 0 s and t = 4 s ? and (iv) What is its average vvelocity for the time interval from t = 2 s to t = 4 ?

The position of an object moving on a straight line is defined by the relation x=t^(3)-2t^(2)-4t , where x is expressed in meter and t in second. Determine (a) the average velocity during the interval of 1 second to 4 second. (b) the velocity at t = 1 s and t = 4 s, (c) the average acceleration during the interval of 1 second to 4 second. (d) the acceleration at t = 4 s and t = 1 s.

The motion of a particle along a straight line is described by the function x=(2t -3)^2, where x is in metres and t is in seconds. Find (a) the position, velocity and acceleration at t=2 s. (b) the velocity of the particle at origin.

The motion of a particle along a straight line is described by the function x=(2t -3)^2, where x is in metres and t is in seconds. Find (a) the position, velocity and acceleration at t=2 s. (b) the velocity of the particle at origin.

The motion of a particle moving along x-axis is represented by the equation (dv)/(dt)=6-3v , where v is in m/s and t is in second. If the particle is at rest at t = 0 , then

The velocity 'v' of a particle moving along straight line is given in terms of time t as v=3(t^(2)-t) where t is in seconds and v is in m//s . The speed is minimum after t=0 second at instant of time