Home
Class 12
PHYSICS
If vecP=3hati+4hatj+12hatk then find mag...

If `vecP=3hati+4hatj+12hatk` then find magnitude and the direction cosines of the `vecP`.

Text Solution

AI Generated Solution

To find the magnitude and direction cosines of the vector \(\vec{P} = 3\hat{i} + 4\hat{j} + 12\hat{k}\), we will follow these steps: ### Step 1: Calculate the Magnitude of \(\vec{P}\) The magnitude of a vector \(\vec{P} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by the formula: \[ |\vec{P}| = \sqrt{a^2 + b^2 + c^2} ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the direction cosines of the vector: hati+2hatj+6hatk

Find the direction cosines of the vector 2hati+2hatj-hatk

Find magnitude and direction cosines of the vector, A= (3hati - 4hatj+5hatk).

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .

If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .

(i) Find the unit vector in the direction of veca+vecb if veca=2hati-hatj+2hatk , and vecb=-hati+hatj-hatk (ii) Find the direction ratios and direction cosines of the vector veca=5hati+3hatj-4hatk .

The position vectors of A and B are 3hati - hatj +7hatk and 4hati-3hatj-hatk . Find the magnitude and direction cosines of vec(AB) .

vecP = (2hati - 2hatj +hatk) , then find |vecP|

Find the direction cosines of the vector hati+2hatj+3hatk .

If vecr=2hati-3hatj+2hatk find the direction cosines of vector.