If `vecP=3hati+4hatj+12hatk` then find magnitude and the direction cosines of the `vecP`.
Text Solution
AI Generated Solution
To find the magnitude and direction cosines of the vector \(\vec{P} = 3\hat{i} + 4\hat{j} + 12\hat{k}\), we will follow these steps:
### Step 1: Calculate the Magnitude of \(\vec{P}\)
The magnitude of a vector \(\vec{P} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by the formula:
\[
|\vec{P}| = \sqrt{a^2 + b^2 + c^2}
...
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Exersice-03|7 Videos
BASIC MATHS
ALLEN|Exercise ASSERTION-REASON|11 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
Find the direction cosines of the vector: hati+2hatj+6hatk
Find the direction cosines of the vector 2hati+2hatj-hatk
Find magnitude and direction cosines of the vector, A= (3hati - 4hatj+5hatk).
If vec(OP)=2hati+3hatj-hatk and vec(OQ)=5hati+4hatj-3hatk . Find vec(PQ) and the direction cosines of vec(PQ) .
If vec(OP)=2hati+3hatj-hatk and vec(OQ)=3hati-4hatj+2hatk find the modulus and direction cosines of vec(PQ) .
(i) Find the unit vector in the direction of veca+vecb if veca=2hati-hatj+2hatk , and vecb=-hati+hatj-hatk (ii) Find the direction ratios and direction cosines of the vector veca=5hati+3hatj-4hatk .
The position vectors of A and B are 3hati - hatj +7hatk and 4hati-3hatj-hatk . Find the magnitude and direction cosines of vec(AB) .
vecP = (2hati - 2hatj +hatk) , then find |vecP|
Find the direction cosines of the vector hati+2hatj+3hatk .
If vecr=2hati-3hatj+2hatk find the direction cosines of vector.