If `vecA=2hati-2hatj-hatk` and `vecB=hati+hatj`, then : (a) Find angle between `vecA` and `vecB`.
A
`vec(B)`
B
`vec(C)`
C
`vec(B). vec(C)`
D
`vec(B)xxvec(C)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the angle between the vectors \(\vec{A}\) and \(\vec{B}\), we can use the formula for the cosine of the angle \(\theta\) between two vectors:
\[
\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|}
\]
### Step 1: Calculate the dot product \(\vec{A} \cdot \vec{B}\)
Given:
\[
\vec{A} = 2\hat{i} - 2\hat{j} - \hat{k}
\]
\[
\vec{B} = \hat{i} + \hat{j}
\]
The dot product \(\vec{A} \cdot \vec{B}\) is calculated as follows:
\[
\vec{A} \cdot \vec{B} = (2\hat{i} - 2\hat{j} - \hat{k}) \cdot (\hat{i} + \hat{j})
\]
Calculating the dot product:
\[
= 2(\hat{i} \cdot \hat{i}) + (-2)(\hat{j} \cdot \hat{j}) + 0
\]
\[
= 2(1) + (-2)(1) + 0 = 2 - 2 + 0 = 0
\]
### Step 2: Calculate the magnitudes of \(\vec{A}\) and \(\vec{B}\)
**Magnitude of \(\vec{A}\)**:
\[
|\vec{A}| = \sqrt{(2)^2 + (-2)^2 + (-1)^2}
\]
\[
= \sqrt{4 + 4 + 1} = \sqrt{9} = 3
\]
**Magnitude of \(\vec{B}\)**:
\[
|\vec{B}| = \sqrt{(1)^2 + (1)^2}
\]
\[
= \sqrt{1 + 1} = \sqrt{2}
\]
### Step 3: Substitute into the cosine formula
Now substituting the dot product and magnitudes into the cosine formula:
\[
\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{0}{3 \cdot \sqrt{2}} = 0
\]
### Step 4: Find the angle \(\theta\)
Since \(\cos \theta = 0\), we find:
\[
\theta = \cos^{-1}(0) = 90^\circ
\]
### Final Answer
The angle between the vectors \(\vec{A}\) and \(\vec{B}\) is \(90^\circ\).
---
To find the angle between the vectors \(\vec{A}\) and \(\vec{B}\), we can use the formula for the cosine of the angle \(\theta\) between two vectors:
\[
\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|}
\]
### Step 1: Calculate the dot product \(\vec{A} \cdot \vec{B}\)
...
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Exersice-03|7 Videos
BASIC MATHS
ALLEN|Exercise ASSERTION-REASON|11 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
vecA=(hati-2hatj+6hatk) and vecB=(hati-2hatj+hatk) , find the cross product between vecA and vecB .
vecA=(hati-2hatj+6hatk) and vecB=(hati-2hatj+hatk) , find the cross product between vecA and vecB .
vecA=(3hati+2hatj-6hatk) and vecB=(hati-2hatj+hatk) , find the scalar product vecA and vecB
If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb
If vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk , then find the angle between the vector (vecA+vecB+vecC) and (vecAxx vecB) in degrees.
If vecA=2hati-3hatj+hatk and vecB=3hati+2hatj. Find vecA.vecB and vecAxxvecB
Given the vector vecA=2hati+3hatj-hatk, vecB=3hati-2hatj-2hatk & vecC=phati+phatj+phatk . Find the angle between (vecA-vecB) &vecC
A unit vector veca in the plane of vecb=2hati+hatj and vecc=hati-hatj+hatk is such that angle between veca and vecd is same as angle between veca and vecb where vecd=vecj+2veck . Then veca is
If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|
If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is