Home
Class 12
PHYSICS
If veca and vecb are two non collinear u...

If `veca` and `vecb` are two non collinear unit vectors and `|veca+vecb|=sqrt(3)` then find the value of `(veca-vecb).(2veca+vecb)`

A

`45^(@), 60^(@)`

B

`30^(@), 60^(@)`

C

`60^(@), 60^(@)`

D

`30^(@), 45^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})\), given that \(\vec{a}\) and \(\vec{b}\) are two non-collinear unit vectors and \(|\vec{a} + \vec{b}| = \sqrt{3}\). ### Step-by-step Solution: 1. **Understanding the Magnitudes**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 \] 2. **Using the Magnitude Formula**: We know that the magnitude of the sum of two vectors can be expressed as: \[ |\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b}} \] Substituting the magnitudes: \[ |\vec{a} + \vec{b}| = \sqrt{1^2 + 1^2 + 2 \vec{a} \cdot \vec{b}} = \sqrt{2 + 2 \vec{a} \cdot \vec{b}} \] Given that \(|\vec{a} + \vec{b}| = \sqrt{3}\), we can set up the equation: \[ \sqrt{2 + 2 \vec{a} \cdot \vec{b}} = \sqrt{3} \] 3. **Squaring Both Sides**: Squaring both sides gives: \[ 2 + 2 \vec{a} \cdot \vec{b} = 3 \] Rearranging this, we find: \[ 2 \vec{a} \cdot \vec{b} = 1 \quad \Rightarrow \quad \vec{a} \cdot \vec{b} = \frac{1}{2} \] 4. **Finding the Dot Product**: Now we need to compute \((\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})\): \[ (\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b}) = \vec{a} \cdot (2\vec{a} + \vec{b}) - \vec{b} \cdot (2\vec{a} + \vec{b}) \] 5. **Expanding the Dot Products**: Expanding the first term: \[ \vec{a} \cdot (2\vec{a} + \vec{b}) = 2\vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} = 2(1) + \frac{1}{2} = 2 + \frac{1}{2} = \frac{5}{2} \] Expanding the second term: \[ \vec{b} \cdot (2\vec{a} + \vec{b}) = 2\vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2 \] 6. **Combining the Results**: Now, substituting back into our expression: \[ (\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b}) = \frac{5}{2} - 2 = \frac{5}{2} - \frac{4}{2} = \frac{1}{2} \] ### Final Answer: Thus, the value of \((\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})\) is: \[ \frac{1}{2} \]

To solve the problem, we need to find the value of \((\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})\), given that \(\vec{a}\) and \(\vec{b}\) are two non-collinear unit vectors and \(|\vec{a} + \vec{b}| = \sqrt{3}\). ### Step-by-step Solution: 1. **Understanding the Magnitudes**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)

If vec a \ a n d \ vec b are two non-collinear unit vector, and ∣ ​ veca + vecb ∣ ​ = 3 ​ then (2 veca −5 vecb ).(3 veca + vecb ) =

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=-1/2vecb ,then find the angle between veca and vecb .

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If veca and vecb are prependicular vectors, |veca + vecb|= 13 and |veca|=5, find the values of |vecb|.

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are any two unit vectors, then find the greatest postive integer in the range of (3|veca + vecb|)/2+2|veca-vecb|

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to