If `veca` and `vecb` are two non collinear unit vectors and `|veca+vecb|=sqrt(3)` then find the value of `(veca-vecb).(2veca+vecb)`
If `veca` and `vecb` are two non collinear unit vectors and `|veca+vecb|=sqrt(3)` then find the value of `(veca-vecb).(2veca+vecb)`
A
`45^(@), 60^(@)`
B
`30^(@), 60^(@)`
C
`60^(@), 60^(@)`
D
`30^(@), 45^(@)`
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the value of \((\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})\), given that \(\vec{a}\) and \(\vec{b}\) are two non-collinear unit vectors and \(|\vec{a} + \vec{b}| = \sqrt{3}\).
### Step-by-step Solution:
1. **Understanding the Magnitudes**:
Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have:
\[
|\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1
\]
2. **Using the Magnitude Formula**:
We know that the magnitude of the sum of two vectors can be expressed as:
\[
|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b}}
\]
Substituting the magnitudes:
\[
|\vec{a} + \vec{b}| = \sqrt{1^2 + 1^2 + 2 \vec{a} \cdot \vec{b}} = \sqrt{2 + 2 \vec{a} \cdot \vec{b}}
\]
Given that \(|\vec{a} + \vec{b}| = \sqrt{3}\), we can set up the equation:
\[
\sqrt{2 + 2 \vec{a} \cdot \vec{b}} = \sqrt{3}
\]
3. **Squaring Both Sides**:
Squaring both sides gives:
\[
2 + 2 \vec{a} \cdot \vec{b} = 3
\]
Rearranging this, we find:
\[
2 \vec{a} \cdot \vec{b} = 1 \quad \Rightarrow \quad \vec{a} \cdot \vec{b} = \frac{1}{2}
\]
4. **Finding the Dot Product**:
Now we need to compute \((\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})\):
\[
(\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b}) = \vec{a} \cdot (2\vec{a} + \vec{b}) - \vec{b} \cdot (2\vec{a} + \vec{b})
\]
5. **Expanding the Dot Products**:
Expanding the first term:
\[
\vec{a} \cdot (2\vec{a} + \vec{b}) = 2\vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} = 2(1) + \frac{1}{2} = 2 + \frac{1}{2} = \frac{5}{2}
\]
Expanding the second term:
\[
\vec{b} \cdot (2\vec{a} + \vec{b}) = 2\vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2
\]
6. **Combining the Results**:
Now, substituting back into our expression:
\[
(\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b}) = \frac{5}{2} - 2 = \frac{5}{2} - \frac{4}{2} = \frac{1}{2}
\]
### Final Answer:
Thus, the value of \((\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})\) is:
\[
\frac{1}{2}
\]
To solve the problem, we need to find the value of \((\vec{a} - \vec{b}) \cdot (2\vec{a} + \vec{b})\), given that \(\vec{a}\) and \(\vec{b}\) are two non-collinear unit vectors and \(|\vec{a} + \vec{b}| = \sqrt{3}\).
### Step-by-step Solution:
1. **Understanding the Magnitudes**:
Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have:
\[
|\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1
...
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)
If vec a \ a n d \ vec b are two non-collinear unit vector, and ∣ veca + vecb ∣ = 3 then (2 veca −5 vecb ).(3 veca + vecb ) =
If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|
If veca and vecb be two non-collinear unit vectors such that vecaxx(vecaxxvecb)=-1/2vecb ,then find the angle between veca and vecb .
If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .
If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is
If veca and vecb are prependicular vectors, |veca + vecb|= 13 and |veca|=5, find the values of |vecb|.
If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then
If veca and vecb are any two unit vectors, then find the greatest postive integer in the range of (3|veca + vecb|)/2+2|veca-vecb|
If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to