Vectors `5hati+yhatj+hatk,2hati+2hatj-2hatk` and `-hati+2hatj+2hatk` are coplaner then find the value of y.
Vectors `5hati+yhatj+hatk,2hati+2hatj-2hatk` and `-hati+2hatj+2hatk` are coplaner then find the value of y.
A
The compound of `vec(a)-vec(b)` will be `(a^(2)-b^(2))/sqrt(a^(2)+b^(2)+ab)`
B
`vec(a)xx vec(b)` is perpendicular to resultant of `(vec(a)+2vec(b))` and `(vec(a)- vec(b))`
C
The component of `vec(a)-vec(b)` along `vec(a)+vec(b)` will be `(a^(2)-b^(2))/sqrt(a^(2)+b^(2)+2ab)`
D
The component of `vec(a)+vec(b)` along `vec(a)-vec(b)` will be `(a^(2)-b^(2))/sqrt(a^(2)+b^(2)+sqrt(3)ab)`
Text Solution
AI Generated Solution
The correct Answer is:
To determine the value of \( y \) for which the vectors \( \mathbf{A} = 5\hat{i} + y\hat{j} + \hat{k} \), \( \mathbf{B} = 2\hat{i} + 2\hat{j} - 2\hat{k} \), and \( \mathbf{C} = -\hat{i} + 2\hat{j} + 2\hat{k} \) are coplanar, we can use the property that three vectors are coplanar if the scalar triple product of the vectors is zero. This can be represented using a determinant.
### Step-by-Step Solution:
1. **Write the vectors in component form**:
- \( \mathbf{A} = (5, y, 1) \)
- \( \mathbf{B} = (2, 2, -2) \)
- \( \mathbf{C} = (-1, 2, 2) \)
2. **Set up the determinant**:
The vectors are coplanar if the determinant of the matrix formed by their components is zero:
\[
\begin{vmatrix}
5 & y & 1 \\
2 & 2 & -2 \\
-1 & 2 & 2
\end{vmatrix} = 0
\]
3. **Calculate the determinant**:
Expanding the determinant:
\[
= 5 \begin{vmatrix}
2 & -2 \\
2 & 2
\end{vmatrix} - y \begin{vmatrix}
2 & -2 \\
-1 & 2
\end{vmatrix} + 1 \begin{vmatrix}
2 & 2 \\
-1 & 2
\end{vmatrix}
\]
Now, calculate each of the 2x2 determinants:
- \( \begin{vmatrix}
2 & -2 \\
2 & 2
\end{vmatrix} = (2)(2) - (-2)(2) = 4 + 4 = 8 \)
- \( \begin{vmatrix}
2 & -2 \\
-1 & 2
\end{vmatrix} = (2)(2) - (-2)(-1) = 4 - 2 = 2 \)
- \( \begin{vmatrix}
2 & 2 \\
-1 & 2
\end{vmatrix} = (2)(2) - (2)(-1) = 4 + 2 = 6 \)
Substitute these values back into the determinant:
\[
= 5(8) - y(2) + 1(6) = 40 - 2y + 6
\]
\[
= 46 - 2y
\]
4. **Set the determinant equal to zero**:
\[
46 - 2y = 0
\]
5. **Solve for \( y \)**:
\[
2y = 46 \implies y = \frac{46}{2} = 23
\]
### Final Answer:
The value of \( y \) for which the vectors are coplanar is \( y = 23 \).
To determine the value of \( y \) for which the vectors \( \mathbf{A} = 5\hat{i} + y\hat{j} + \hat{k} \), \( \mathbf{B} = 2\hat{i} + 2\hat{j} - 2\hat{k} \), and \( \mathbf{C} = -\hat{i} + 2\hat{j} + 2\hat{k} \) are coplanar, we can use the property that three vectors are coplanar if the scalar triple product of the vectors is zero. This can be represented using a determinant.
### Step-by-Step Solution:
1. **Write the vectors in component form**:
- \( \mathbf{A} = (5, y, 1) \)
- \( \mathbf{B} = (2, 2, -2) \)
- \( \mathbf{C} = (-1, 2, 2) \)
...
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.
If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .
If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.
The value of n so that vectors 2hati+3hatj-2hatk, 5hati+nhatj+hatk and -hati+2hatj+3hatk may be complanar.will be
If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is
Show that the vectors hati-3hatj+2hatk,2hati-4hatj-hatk and 3hati+2hatj-hatk and linearly independent.
The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:
Let veca=2hati+hatj+hatk, vecb=hati+2hatj-hatk and vecc=hati+hatj-2hatk be three vectors . A vector in the plane of vecb and vecc whose projection on veca is of magnitude sqrt((2/3)) is (A) 2hati+3hatj+3hatk (B) 2hati+3hatj-3hatk (C) -2hati-hatj+5hatk (D) 2hati+hatj+5hatk
Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to
The number of real values of a for which the vectors hati+2hatj+hatk, ahati+hatj+2hatk and hati+2hatj+ahatk are coplanar is