Integrate the following function (a) `int_(o)^(2) 2t dt` (b) `int _(pi//6)^(pi//3) sin x dx`
(c) `int _(4)^(10)(dx)/(x)` (d) `int _(o)^(pi) cos x dx` (e) `int _(1) ^(2)(2t -4) dt`
A
`F_(1)=3N, F_(2)=5N, F_(3)=1 N`
B
`F_(1)=3N, F_(2)=5N, F_(3)=6 N`
C
`F_(1)=3N, F_(2)=5N, F_(3)=9 N`
D
`F_(1)=3N, F_(2)=5N, F_(3)=16 N`
Text Solution
Verified by Experts
The correct Answer is:
B
For equilibrium, net resultant for must be zero. These forces form a closed traingle such that `F_(1)~F_(2) le F_(3)le F_(1)+F_(2)rArr 2N le F_(3) le 8N`
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Exersice-03|7 Videos
BASIC MATHS
ALLEN|Exercise ASSERTION-REASON|11 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
int_(pi//6)^(pi//2) cos x dx
Integrate the following functions int_(0)^(pi//2) " cos x dx"
Integrate the following : int(sin4t+2t)dt
int_(-pi//4)^(pi//4) e^(-x)sin x" dx" is
int_(0)^(pi//2) x sin x cos x dx
Integrate the following functions with respect to x (a) int (5x^2 + 3x -2) dx (b) int (4sin x-(2)/(x)) dx (c) int (dx)/(4x+5) (d) int (6x +2)^(3) dx