What is the value of linear veloctity, if `vecomega =hati-hatj+hatk` and `vecr=hati+2hatj+3hatk`
A
`hat(i)+hat(j)+hat(k)`
B
`-hat(i)-hat(j)-hat(k)`
C
`vec(0)`
D
`-3hat(i)-3hat(j)-3hat(k)`
Text Solution
AI Generated Solution
The correct Answer is:
To find the value of linear velocity \( \vec{v} \) given the angular velocity \( \vec{\omega} \) and the position vector \( \vec{r} \), we can use the formula:
\[
\vec{v} = \vec{\omega} \times \vec{r}
\]
### Step 1: Identify the vectors
Given:
- \( \vec{\omega} = \hat{i} - \hat{j} + \hat{k} \)
- \( \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} \)
### Step 2: Set up the cross product using the determinant method
We will set up a determinant to compute the cross product \( \vec{\omega} \times \vec{r} \):
\[
\vec{v} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 1 \\
1 & 2 & 3
\end{vmatrix}
\]
### Step 3: Calculate the determinant
We can expand this determinant as follows:
\[
\vec{v} = \hat{i} \begin{vmatrix}
-1 & 1 \\
2 & 3
\end{vmatrix} - \hat{j} \begin{vmatrix}
1 & 1 \\
1 & 3
\end{vmatrix} + \hat{k} \begin{vmatrix}
1 & -1 \\
1 & 2
\end{vmatrix}
\]
Calculating each of the 2x2 determinants:
1. For \( \hat{i} \):
\[
\begin{vmatrix}
-1 & 1 \\
2 & 3
\end{vmatrix} = (-1)(3) - (1)(2) = -3 - 2 = -5
\]
2. For \( \hat{j} \):
\[
\begin{vmatrix}
1 & 1 \\
1 & 3
\end{vmatrix} = (1)(3) - (1)(1) = 3 - 1 = 2
\]
3. For \( \hat{k} \):
\[
\begin{vmatrix}
1 & -1 \\
1 & 2
\end{vmatrix} = (1)(2) - (-1)(1) = 2 + 1 = 3
\]
### Step 4: Combine the results
Now substituting back into the expression for \( \vec{v} \):
\[
\vec{v} = -5\hat{i} - 2\hat{j} + 3\hat{k}
\]
### Final Result
Thus, the value of linear velocity \( \vec{v} \) is:
\[
\vec{v} = -5\hat{i} - 2\hat{j} + 3\hat{k}
\]
---
To find the value of linear velocity \( \vec{v} \) given the angular velocity \( \vec{\omega} \) and the position vector \( \vec{r} \), we can use the formula:
\[
\vec{v} = \vec{\omega} \times \vec{r}
\]
### Step 1: Identify the vectors
Given:
...
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Exersice-03|7 Videos
BASIC MATHS
ALLEN|Exercise ASSERTION-REASON|11 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
What is the value of linear velocity, if vecomega=3hati-4hatj+hatk and vecr=5hati-6hatj+6hatk ?
What is the value of linear velocity, if vecomega=3hati-4hatj+hatk and vecr=5hati-6hatj+6hatk ?
For a body, angular velocity vecomega= hati-2hatj+3hatk and radius vector vecr=hati+hatj+hatk , then its velocity (vecv= vecomega xx vecr) is :
Show that the line of intersection of the planes vecr*(hati+2hatj+3hatk)=0 and vecr*(3hati+2hatj+hatk)=0 is equally inclined to hati and hatk . Also find the angleit makes with hatj .
The linear velocity of rotating body is given by vecv = vecomega xx vecr where vecomega is the angular velocity and vecr is the radius vector. The angular velocity of body vecomega = hati - 2hatj + 2hatk and this radius vector vecr = 4hatj - 3hatk , then |vecv| is
Find the equation of the plane through the point hati+4hatj-2hatk and perpendicular to the line of intersection of the planes vecr.(hati+hatj+hatk)=10 and vecr.(2hati-hatj+3hatk)=18.
Find the line of intersection of the planes vecr.(3hati-hatj+hatk)=1 and vecr.(hati+4hatj-2hatk)=2
The vector parallel to the line of intersection of the planes vecr.(3hati-hatj+hatk) = 1 and vecr.(hati+4hatj-2hatk)=2 is :
Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .
Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are