Home
Class 12
PHYSICS
What is the value of linear veloctity, i...

What is the value of linear veloctity, if `vecomega =hati-hatj+hatk` and `vecr=hati+2hatj+3hatk`

A

`hat(i)+hat(j)+hat(k)`

B

`-hat(i)-hat(j)-hat(k)`

C

`vec(0)`

D

`-3hat(i)-3hat(j)-3hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of linear velocity \( \vec{v} \) given the angular velocity \( \vec{\omega} \) and the position vector \( \vec{r} \), we can use the formula: \[ \vec{v} = \vec{\omega} \times \vec{r} \] ### Step 1: Identify the vectors Given: - \( \vec{\omega} = \hat{i} - \hat{j} + \hat{k} \) - \( \vec{r} = \hat{i} + 2\hat{j} + 3\hat{k} \) ### Step 2: Set up the cross product using the determinant method We will set up a determinant to compute the cross product \( \vec{\omega} \times \vec{r} \): \[ \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 2 & 3 \end{vmatrix} \] ### Step 3: Calculate the determinant We can expand this determinant as follows: \[ \vec{v} = \hat{i} \begin{vmatrix} -1 & 1 \\ 2 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -1 & 1 \\ 2 & 3 \end{vmatrix} = (-1)(3) - (1)(2) = -3 - 2 = -5 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 1 & 1 \\ 1 & 3 \end{vmatrix} = (1)(3) - (1)(1) = 3 - 1 = 2 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 1 & -1 \\ 1 & 2 \end{vmatrix} = (1)(2) - (-1)(1) = 2 + 1 = 3 \] ### Step 4: Combine the results Now substituting back into the expression for \( \vec{v} \): \[ \vec{v} = -5\hat{i} - 2\hat{j} + 3\hat{k} \] ### Final Result Thus, the value of linear velocity \( \vec{v} \) is: \[ \vec{v} = -5\hat{i} - 2\hat{j} + 3\hat{k} \] ---

To find the value of linear velocity \( \vec{v} \) given the angular velocity \( \vec{\omega} \) and the position vector \( \vec{r} \), we can use the formula: \[ \vec{v} = \vec{\omega} \times \vec{r} \] ### Step 1: Identify the vectors Given: ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

What is the value of linear velocity, if vecomega=3hati-4hatj+hatk and vecr=5hati-6hatj+6hatk ?

What is the value of linear velocity, if vecomega=3hati-4hatj+hatk and vecr=5hati-6hatj+6hatk ?

For a body, angular velocity vecomega= hati-2hatj+3hatk and radius vector vecr=hati+hatj+hatk , then its velocity (vecv= vecomega xx vecr) is :

Show that the line of intersection of the planes vecr*(hati+2hatj+3hatk)=0 and vecr*(3hati+2hatj+hatk)=0 is equally inclined to hati and hatk . Also find the angleit makes with hatj .

The linear velocity of rotating body is given by vecv = vecomega xx vecr where vecomega is the angular velocity and vecr is the radius vector. The angular velocity of body vecomega = hati - 2hatj + 2hatk and this radius vector vecr = 4hatj - 3hatk , then |vecv| is

Find the equation of the plane through the point hati+4hatj-2hatk and perpendicular to the line of intersection of the planes vecr.(hati+hatj+hatk)=10 and vecr.(2hati-hatj+3hatk)=18.

Find the line of intersection of the planes vecr.(3hati-hatj+hatk)=1 and vecr.(hati+4hatj-2hatk)=2

The vector parallel to the line of intersection of the planes vecr.(3hati-hatj+hatk) = 1 and vecr.(hati+4hatj-2hatk)=2 is :

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are