Home
Class 12
PHYSICS
What is the torque of the force vecF=(2h...

What is the torque of the force `vecF=(2hati+3hatj+4hatk)N` acting at the point `vecr=(2hati+3hatj+4hatk)m` about the origin? (Note: Tortue, `vectau=vecrxxvecF`)

Text Solution

AI Generated Solution

The correct Answer is:
To find the torque of the force \(\vec{F} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \, \text{N}\) acting at the point \(\vec{r} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \, \text{m}\) about the origin, we will use the formula for torque: \[ \vec{\tau} = \vec{r} \times \vec{F} \] ### Step 1: Write down the vectors We have: - \(\vec{r} = 2\hat{i} + 3\hat{j} + 4\hat{k}\) - \(\vec{F} = 2\hat{i} + 3\hat{j} + 4\hat{k}\) ### Step 2: Set up the cross product using the determinant method The cross product can be calculated using the determinant of a matrix formed by the unit vectors and the components of \(\vec{r}\) and \(\vec{F}\): \[ \vec{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 2 & 3 & 4 \end{vmatrix} \] ### Step 3: Calculate the determinant To calculate the determinant, we can expand it as follows: \[ \vec{\tau} = \hat{i} \begin{vmatrix} 3 & 4 \\ 3 & 4 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4 \\ 2 & 4 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} \] ### Step 4: Evaluate the 2x2 determinants Each of the 2x2 determinants evaluates to zero because the rows are identical: 1. \(\begin{vmatrix} 3 & 4 \\ 3 & 4 \end{vmatrix} = 3 \cdot 4 - 4 \cdot 3 = 0\) 2. \(\begin{vmatrix} 2 & 4 \\ 2 & 4 \end{vmatrix} = 2 \cdot 4 - 4 \cdot 2 = 0\) 3. \(\begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} = 2 \cdot 3 - 3 \cdot 2 = 0\) ### Step 5: Combine the results Putting it all together, we find: \[ \vec{\tau} = \hat{i}(0) - \hat{j}(0) + \hat{k}(0) = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} = \vec{0} \] ### Final Result The torque \(\vec{\tau}\) is the null vector: \[ \vec{\tau} = \vec{0} \]

To find the torque of the force \(\vec{F} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \, \text{N}\) acting at the point \(\vec{r} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \, \text{m}\) about the origin, we will use the formula for torque: \[ \vec{\tau} = \vec{r} \times \vec{F} \] ### Step 1: Write down the vectors We have: ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the torque of a force vecF=2hati+hatj+4hatk acting at the point vecr=7hati+3hatj+hatk :

Find the torque of a force vecF= -3hati+hatj+5hatk acting at the point vecr=7hati+3hatj+hatk

Find the torque of a force vecF=-3hati+2hatj+hatk acting at the point vecr=8hati+2hatj+3hatk about origin

The torque of force F =(2hati-3hatj+4hatk) newton acting at the point r=(3hati+2hatj+3hatk) metre about origin is (in N-m)

Find the torque (vectau=vecrxxvecF) of a force vecF=-3hati+hatj+3hatk acting at the point vecr=7hati+3hatj+hatk

The torpue of force vecF=-2hati+2hatj+3hatk acting on a point vecr=hati-2hatj+hatk about origin will be :

A force of (2 hati - 4 hatj + 2 hatk ) N act a point (3 hati+2 hatj -4 hatk) metre form the origin. The magnitude of torque is

Prove that the plane vecr*(hati+2hatj-hatk)=3 contains the line vecr=hati+hatj+lamda(2hati+hatj+4hatk).

Find the image of the point (3hati-hatj+11hatk) in the line vecr = 2 hatj + 3hatk+lambda(2hati+3hatj+4hatk) .

A force vecF=4hati-5hatj+3hatk N is acting on a point vecr_1=2hati+4hatj+3hatk m. The torque acting about a point vecr_2=4hati-3hatk m is