What is the torque of the force `vecF=(2hati+3hatj+4hatk)N` acting at the point `vecr=(2hati+3hatj+4hatk)m` about the origin? (Note: Tortue, `vectau=vecrxxvecF`)
Text Solution
AI Generated Solution
The correct Answer is:
To find the torque of the force \(\vec{F} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \, \text{N}\) acting at the point \(\vec{r} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \, \text{m}\) about the origin, we will use the formula for torque:
\[
\vec{\tau} = \vec{r} \times \vec{F}
\]
### Step 1: Write down the vectors
We have:
- \(\vec{r} = 2\hat{i} + 3\hat{j} + 4\hat{k}\)
- \(\vec{F} = 2\hat{i} + 3\hat{j} + 4\hat{k}\)
### Step 2: Set up the cross product using the determinant method
The cross product can be calculated using the determinant of a matrix formed by the unit vectors and the components of \(\vec{r}\) and \(\vec{F}\):
\[
\vec{\tau} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & 4 \\
2 & 3 & 4
\end{vmatrix}
\]
### Step 3: Calculate the determinant
To calculate the determinant, we can expand it as follows:
\[
\vec{\tau} = \hat{i} \begin{vmatrix}
3 & 4 \\
3 & 4
\end{vmatrix} - \hat{j} \begin{vmatrix}
2 & 4 \\
2 & 4
\end{vmatrix} + \hat{k} \begin{vmatrix}
2 & 3 \\
2 & 3
\end{vmatrix}
\]
### Step 4: Evaluate the 2x2 determinants
Each of the 2x2 determinants evaluates to zero because the rows are identical:
1. \(\begin{vmatrix}
3 & 4 \\
3 & 4
\end{vmatrix} = 3 \cdot 4 - 4 \cdot 3 = 0\)
2. \(\begin{vmatrix}
2 & 4 \\
2 & 4
\end{vmatrix} = 2 \cdot 4 - 4 \cdot 2 = 0\)
3. \(\begin{vmatrix}
2 & 3 \\
2 & 3
\end{vmatrix} = 2 \cdot 3 - 3 \cdot 2 = 0\)
### Step 5: Combine the results
Putting it all together, we find:
\[
\vec{\tau} = \hat{i}(0) - \hat{j}(0) + \hat{k}(0) = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} = \vec{0}
\]
### Final Result
The torque \(\vec{\tau}\) is the null vector:
\[
\vec{\tau} = \vec{0}
\]
To find the torque of the force \(\vec{F} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \, \text{N}\) acting at the point \(\vec{r} = (2\hat{i} + 3\hat{j} + 4\hat{k}) \, \text{m}\) about the origin, we will use the formula for torque:
\[
\vec{\tau} = \vec{r} \times \vec{F}
\]
### Step 1: Write down the vectors
We have:
...
Topper's Solved these Questions
BASIC MATHS
ALLEN|Exercise Exersice-03|7 Videos
BASIC MATHS
ALLEN|Exercise ASSERTION-REASON|11 Videos
AIIMS 2019
ALLEN|Exercise PHYSICS|40 Videos
CIRCULAR MOTION
ALLEN|Exercise EXERCISE (J-A)|6 Videos
Similar Questions
Explore conceptually related problems
Find the torque of a force vecF=2hati+hatj+4hatk acting at the point vecr=7hati+3hatj+hatk :
Find the torque of a force vecF= -3hati+hatj+5hatk acting at the point vecr=7hati+3hatj+hatk
Find the torque of a force vecF=-3hati+2hatj+hatk acting at the point vecr=8hati+2hatj+3hatk about origin
The torque of force F =(2hati-3hatj+4hatk) newton acting at the point r=(3hati+2hatj+3hatk) metre about origin is (in N-m)
Find the torque (vectau=vecrxxvecF) of a force vecF=-3hati+hatj+3hatk acting at the point vecr=7hati+3hatj+hatk
The torpue of force vecF=-2hati+2hatj+3hatk acting on a point vecr=hati-2hatj+hatk about origin will be :
A force of (2 hati - 4 hatj + 2 hatk ) N act a point (3 hati+2 hatj -4 hatk) metre form the origin. The magnitude of torque is
Prove that the plane vecr*(hati+2hatj-hatk)=3 contains the line vecr=hati+hatj+lamda(2hati+hatj+4hatk).
Find the image of the point (3hati-hatj+11hatk) in the line vecr = 2 hatj + 3hatk+lambda(2hati+3hatj+4hatk) .
A force vecF=4hati-5hatj+3hatk N is acting on a point vecr_1=2hati+4hatj+3hatk m. The torque acting about a point vecr_2=4hati-3hatk m is