Home
Class 12
PHYSICS
If the vectors (hati+hatj+hatk) and (3 h...

If the vectors `(hati+hatj+hatk)` and `(3 hati+ 2 hatj)` form two sides of a triangle, then area of the triangle is :

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the vectors \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) and \( \mathbf{B} = 3\hat{i} + 2\hat{j} \), we can use the formula for the area of a triangle given by two vectors: \[ \text{Area} = \frac{1}{2} \left| \mathbf{A} \times \mathbf{B} \right| \] ### Step 1: Calculate the cross product \( \mathbf{A} \times \mathbf{B} \) The vectors are: - \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{B} = 3\hat{i} + 2\hat{j} + 0\hat{k} \) To calculate the cross product, we can use the determinant method: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 3 & 2 & 0 \end{vmatrix} \] ### Step 2: Expand the determinant Using the determinant formula, we can expand it as follows: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = (1)(0) - (1)(2) = -2 \] 2. For \( -\hat{j} \): \[ \begin{vmatrix} 1 & 1 \\ 3 & 0 \end{vmatrix} = (1)(0) - (1)(3) = -3 \quad \Rightarrow \quad -(-3) = 3 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 1 & 1 \\ 3 & 2 \end{vmatrix} = (1)(2) - (1)(3) = 2 - 3 = -1 \] Putting it all together: \[ \mathbf{A} \times \mathbf{B} = -2\hat{i} + 3\hat{j} - 1\hat{k} \] ### Step 3: Find the magnitude of the cross product Now we find the magnitude of the vector \( -2\hat{i} + 3\hat{j} - 1\hat{k} \): \[ \left| \mathbf{A} \times \mathbf{B} \right| = \sqrt{(-2)^2 + 3^2 + (-1)^2} = \sqrt{4 + 9 + 1} = \sqrt{14} \] ### Step 4: Calculate the area of the triangle Now we can find the area: \[ \text{Area} = \frac{1}{2} \left| \mathbf{A} \times \mathbf{B} \right| = \frac{1}{2} \sqrt{14} \] ### Final Answer Thus, the area of the triangle is: \[ \text{Area} = \frac{\sqrt{14}}{2} \text{ square units} \]

To find the area of the triangle formed by the vectors \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) and \( \mathbf{B} = 3\hat{i} + 2\hat{j} \), we can use the formula for the area of a triangle given by two vectors: \[ \text{Area} = \frac{1}{2} \left| \mathbf{A} \times \mathbf{B} \right| \] ### Step 1: Calculate the cross product \( \mathbf{A} \times \mathbf{B} \) ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If the vectors (hati+ hatj + hatk) and 3 hati from two sides of a triangle, then area of triangle is :

If the vectors 6hati-2hatj+3hatkk,2hati+3hatj-6hatk and 3hati+6hatj-2hatk form a triangle, then it is

Prove that the vecotos 3hati+5hatj+2hatk, 2hati-3hatj-5hatk and 5hati+2hatj-3hatk form the sides of an equlateral triangle.

If the vectors hati-hatj, hatj+hatk and veca form a triangle then veca may be (A) -hati-hatk (B) hati-2hatj-hatk (C) 2hati+hatj+hatjk (D) hati+hatk

If the vectors hati-hatj, hatj+hatk and veca form a triangle then veca may be (A) -hati-hatk (B) hati-2hatj-hatk (C) 2hati+hatj+hatjk (D) hati+hatk

If the position vectors of the vertices of a triangle of a triangle are 2 hati - hatj + hatk , hati - 3 hatj - 5 hatk and 3 hati -4 hatj - 4 hatk , then the triangle is

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

The values of a for which the points A, B, and C with position vectors 2hati - hatj + hatk, hati - 3hatj - 5hatk, and ahati - 3hatj + hatk ,respectively, are the vertices of a right-angled triangle with C = pi/2 are

If vecr=(hati+2hatj+3hatk)+lambda(hati-hatj+hatk) and vecr=(hati+2hatj+3hatk)+mu(hati+hatj-hatk) are two lines, then the equation of acute angle bisector of two lines is