Home
Class 12
PHYSICS
The angle between the two vectors vecA=2...

The angle between the two vectors `vecA=2hati+3hatj+4hatk` and `vecB=1hati+2hatj-3hatk` will be :

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the two vectors \(\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}\) and \(\vec{B} = 1\hat{i} + 2\hat{j} - 3\hat{k}\), we will use the formula: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} \] ### Step 1: Calculate the dot product \(\vec{A} \cdot \vec{B}\) The dot product of two vectors \(\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) and \(\vec{B} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}\) is given by: \[ \vec{A} \cdot \vec{B} = a_1b_1 + a_2b_2 + a_3b_3 \] For our vectors: \[ \vec{A} \cdot \vec{B} = (2)(1) + (3)(2) + (4)(-3) \] Calculating this: \[ = 2 + 6 - 12 = -4 \] ### Step 2: Calculate the magnitudes of \(\vec{A}\) and \(\vec{B}\) The magnitude of a vector \(\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) is given by: \[ |\vec{A}| = \sqrt{a_1^2 + a_2^2 + a_3^2} \] For \(\vec{A}\): \[ |\vec{A}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{4 + 9 + 16} = \sqrt{29} \] For \(\vec{B}\): \[ |\vec{B}| = \sqrt{1^2 + 2^2 + (-3)^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] ### Step 3: Substitute into the cosine formula Now we substitute the dot product and the magnitudes into the cosine formula: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} = \frac{-4}{\sqrt{29} \cdot \sqrt{14}} \] ### Step 4: Calculate \(\sqrt{29} \cdot \sqrt{14}\) Calculating the product of the magnitudes: \[ \sqrt{29} \cdot \sqrt{14} = \sqrt{29 \cdot 14} = \sqrt{406} \] ### Step 5: Final calculation for \(\cos \theta\) Now we have: \[ \cos \theta = \frac{-4}{\sqrt{406}} \] ### Step 6: Find \(\theta\) To find \(\theta\), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{-4}{\sqrt{406}}\right) \] ### Summary of the solution The angle \(\theta\) between the vectors \(\vec{A}\) and \(\vec{B}\) is given by: \[ \theta = \cos^{-1}\left(\frac{-4}{\sqrt{406}}\right) \]

To find the angle between the two vectors \(\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}\) and \(\vec{B} = 1\hat{i} + 2\hat{j} - 3\hat{k}\), we will use the formula: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} \] ### Step 1: Calculate the dot product \(\vec{A} \cdot \vec{B}\) ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The angle between the two vectors vecA=hati+2hatj-hatk and vecB=-hati+hatj-2hatk

The angles between the two vectors vecA=3hati+4hatj+5hatk and vecB=3hati+4hatj-5hatk will be

Find the angle between the vectors: vecA=hati-2hatj-5hatkandvecB=2hati+hatj-4hatk

Find the vector of magnitude 3, bisecting the angle between the vectors veca=2hati+hatj-hatk and vecb=hati-2hatj+hatk .

Find the angle 'theta' between the vector veca=2hati+3hatj-4hatk and vecb=3hati-2hatj+4hatk .

Find the angle between the following vectors : (i) veca = 2hati-6hatj+3hatk and vecb = hati+2hatj-2hatk (ii) veca=6hati+3hatj-2hatk and vecb=4hati-2hatj+9hatk

Find the sine of the angle between the vectors veca=2hati-hatj+3hatk and vecb=hati+3hatj+2hatk .

Two vectors vecA=4hati+alphahatj+2hatk" and "vecB=2hati+hatj+hatk are parallel if :-

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

The angle between two vectors -2hati+3hatj+k and hati+2hatj-4hatk is