Home
Class 12
PHYSICS
If the function f(x)={{:((1+cospix)/(p...

If the function `f(x)={{:((1+cospix)/(pi^(2)(x+1)^(2)),",",xlt-1),(ax+b,",",-1lexle1"is continuous" AA x "in R, then the value of 3a-b is-"),((x-1)/(lnsqrt(x)),",",xgt1):}`

A

3

B

1

C

`-1`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at the points \( x = -1 \) and \( x = 1 \). The function is defined piecewise, so we will analyze the limits from both sides at these points. ### Step 1: Check Continuity at \( x = -1 \) 1. **Left-hand limit as \( x \to -1^- \)**: \[ \lim_{x \to -1^-} f(x) = \lim_{x \to -1^-} \frac{1 - \cos(\pi x)}{\pi^2 (x + 1)^2} \] Substituting \( x = -1 \) gives: \[ \frac{1 - \cos(-\pi)}{\pi^2 (0)^2} = \frac{1 - (-1)}{0} = \frac{2}{0} \text{ (undefined)} \] Since we get \( 0/0 \), we apply L'Hôpital's Rule. 2. **Apply L'Hôpital's Rule**: Differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}(1 - \cos(\pi x)) = \pi \sin(\pi x) \] \[ \text{Denominator: } \frac{d}{dx}(\pi^2 (x + 1)^2) = \pi^2 \cdot 2(x + 1) \] So we have: \[ \lim_{x \to -1^-} \frac{\pi \sin(\pi x)}{\pi^2 \cdot 2(x + 1)} = \lim_{x \to -1} \frac{\sin(\pi x)}{2\pi (x + 1)} \] Substituting \( x = -1 \) again gives \( 0/0 \), so we apply L'Hôpital's Rule again. 3. **Differentiate again**: \[ \text{Numerator: } \frac{d}{dx}(\sin(\pi x)) = \pi \cos(\pi x) \] \[ \text{Denominator: } \frac{d}{dx}(2\pi (x + 1)) = 2\pi \] Now we have: \[ \lim_{x \to -1} \frac{\pi \cos(\pi x)}{2\pi} = \frac{\cos(-\pi)}{2} = \frac{-1}{2} \] 4. **Right-hand limit as \( x \to -1^+ \)**: \[ \lim_{x \to -1^+} f(x) = A(-1) + B = -A + B \] 5. **Set limits equal for continuity**: \[ -A + B = -\frac{1}{2} \quad \text{(Equation 1)} \] ### Step 2: Check Continuity at \( x = 1 \) 1. **Left-hand limit as \( x \to 1^- \)**: \[ \lim_{x \to 1^-} f(x) = A(1) + B = A + B \] 2. **Right-hand limit as \( x \to 1^+ \)**: \[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1} \frac{x - 1}{\ln(\sqrt{x})} \] This also gives \( 0/0 \), so we apply L'Hôpital's Rule: \[ \text{Numerator: } 1 \] \[ \text{Denominator: } \frac{1}{2\sqrt{x}} \text{ (derivative of } \ln(\sqrt{x}) \text{)} \] Thus: \[ \lim_{x \to 1} \frac{1}{\frac{1}{2}} = 2 \] 3. **Set limits equal for continuity**: \[ A + B = 2 \quad \text{(Equation 2)} \] ### Step 3: Solve the System of Equations From Equation 1: \[ -B + A = \frac{1}{2} \quad \text{(Rearranging gives } A = B + \frac{1}{2}\text{)} \] Substituting into Equation 2: \[ (B + \frac{1}{2}) + B = 2 \] \[ 2B + \frac{1}{2} = 2 \Rightarrow 2B = \frac{3}{2} \Rightarrow B = \frac{3}{4} \] Substituting \( B \) back to find \( A \): \[ A = \frac{3}{4} + \frac{1}{2} = \frac{3}{4} + \frac{2}{4} = \frac{5}{4} \] ### Step 4: Calculate \( 3a - b \) Now we need to find \( 3A - B \): \[ 3A - B = 3 \left(\frac{5}{4}\right) - \frac{3}{4} = \frac{15}{4} - \frac{3}{4} = \frac{12}{4} = 3 \] Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise PHYSICS|17 Videos
  • TEST PAPER 4

    ALLEN|Exercise PHYSICS|44 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(ax^(2)+1",",xgt1),(x+a",",xle1):} is derivable at x=1 , then the value of a is

If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", " x= 1):}, is continuous at x=1,find the value of k.

Range of the function f(x)= x cos( 1/x), xgt1

Range of the function f(x)= x cos( 1/x), xgt1

If f(x)={{:(a+cos^(-1)(x+b),":",xge1),(-x,":",xlt1):} is differentiable at x = 1, then the value of b-a is equal to

If the function f(x)= {(3ax +b", " x gt 1 ),(11 ", "x=1),(5 ax-2b", " x lt 1):} continuous at x= 1 then ( a, b) =?

If the function f(x) = {{:(a|pi - x|+1"," x le 5),(" is continuous at "),(b|x-pi|+3","xgt5):} x = 5, then the value of a - b is

If the function f(x)={A x-B ,xlt=1 3x ,1

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

Consider the function f(x)={2x+3,xlt=1-x^2+6,x >1