Home
Class 12
PHYSICS
The value of the following limit lim(nto...

The value of the following limit `lim_(ntooo) n(n+1)(ln(1+(1)/(n))-sin((1)/(n+1)))` is-

A

`(1)/(2)`

B

`-(1)/(2)`

C

0

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} n(n+1)\left(\ln\left(1+\frac{1}{n}\right) - \sin\left(\frac{1}{n+1}\right)\right), \] we will use Taylor series expansions for \(\ln(1+x)\) and \(\sin(x)\). ### Step 1: Expand \(\ln\left(1+\frac{1}{n}\right)\) Using the Taylor series expansion around \(x = 0\): \[ \ln(1+x) \approx x - \frac{x^2}{2} + O(x^3). \] For \(x = \frac{1}{n}\): \[ \ln\left(1+\frac{1}{n}\right) \approx \frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right). \] ### Step 2: Expand \(\sin\left(\frac{1}{n+1}\right)\) Using the Taylor series expansion around \(x = 0\): \[ \sin(x) \approx x - \frac{x^3}{6} + O(x^5). \] For \(x = \frac{1}{n+1}\): \[ \sin\left(\frac{1}{n+1}\right) \approx \frac{1}{n+1} - \frac{1}{6(n+1)^3} + O\left(\frac{1}{(n+1)^5}\right). \] ### Step 3: Substitute the expansions into the limit Now, substituting the expansions into the limit expression: \[ \ln\left(1+\frac{1}{n}\right) - \sin\left(\frac{1}{n+1}\right) \approx \left(\frac{1}{n} - \frac{1}{2n^2}\right) - \left(\frac{1}{n+1} - \frac{1}{6(n+1)^3}\right). \] ### Step 4: Simplify the expression Now we simplify: \[ \frac{1}{n} - \frac{1}{n+1} = \frac{(n+1) - n}{n(n+1)} = \frac{1}{n(n+1)}. \] Thus, \[ \ln\left(1+\frac{1}{n}\right) - \sin\left(\frac{1}{n+1}\right) \approx \frac{1}{n(n+1)} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right). \] ### Step 5: Combine and multiply by \(n(n+1)\) Now, we multiply by \(n(n+1)\): \[ n(n+1)\left(\frac{1}{n(n+1)} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right)\right) = 1 - \frac{n(n+1)}{2n^2} + O\left(\frac{1}{n}\right). \] ### Step 6: Simplify further The term \(-\frac{n(n+1)}{2n^2}\) simplifies to: \[ -\frac{(n+1)}{2n} = -\frac{1}{2} - \frac{1}{2n}. \] As \(n \to \infty\), the \(O\left(\frac{1}{n}\right)\) term vanishes, and we are left with: \[ 1 - \frac{1}{2} = \frac{1}{2}. \] ### Conclusion Thus, the limit evaluates to: \[ \lim_{n \to \infty} n(n+1)\left(\ln\left(1+\frac{1}{n}\right) - \sin\left(\frac{1}{n+1}\right)\right) = \frac{1}{2}. \] ### Final Answer The value of the limit is \(\frac{1}{2}\). ---
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise PHYSICS|17 Videos
  • TEST PAPER 4

    ALLEN|Exercise PHYSICS|44 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: lim_(nto oo)[(n!)/(n^(n))]^(1//n)

Evaluate the following limit: (lim)_(n->oo)2^(n-1)sin(a/(2^n))

Evaluate the following limits : Lim_( n to oo) (1+2/n)^(2n)

Evaluate the following limit: (lim)_(n->oo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

Evaluate the following limit: (lim)_(n->oo)(1^3+2^3+ n^3)/((n-1)^4)

Evaluate the following limits : Lim_( x to 0) ((1+x)^(m)-1)/((1+x)^(n)-1)

Evaluate the following limit: (lim)_(n->oo)(1/(n^2)+2/(n^2)+3/(n^2)++(n-1)/(n^2\ ))

lim_(ntooo) ((n!)^(1//n))/(n) equals

lim_(n to oo)(n!)/((n+1)!-n!)

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0