Home
Class 12
PHYSICS
The x-intercept of the tangent to a curv...

The x-intercept of the tangent to a curve is equal to the ordinate of the point of contact. The equation of the curve through the point (1,1) is

A

`(0,e)`

B

`(e,e)`

C

`((2)/(e),(1)/(e))`

D

`((1)/(e),(2)/(e))`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise PHYSICS|17 Videos
  • TEST PAPER 4

    ALLEN|Exercise PHYSICS|44 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

The x intercept of the tangent to a curve f(x,y) = 0 is equal to the ordinate of the point of contact. Then the value of (d^(2)x)/(dy^(2)) at the point (1,1) on the curve is "_____".

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is__________

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is__________

The slope of the tangent to the curve at any point is reciprocal of twice the ordinate of that point. The curve passes through the point (4, 3) . Determine its equation.

The slope of the tangent to the curve at any point is reciprocal of twice the ordinate of that point. The curve passes through the point (4, 3) . Determine its equation.

A curve y=f(x) passes through point P(1,1) . The normal to the curve at P is a (y-1)+(x-1)=0 . If the slope of the tangent at any point on the curve is proportional to the ordinate of the point, then the equation of the curve is

Find the equation of all possible curves such that length of intercept made by any tangent on x-axis is equal to the square of X-coordinate of the point of tangency. Given that the curve passes through (2,1)

A curve y=f(x) passes through the point P(1,1) . The normal to the curve at P is a(y-1)+(x-1)=0 . If the slope of the tangent at any point on the curve is proportional to the ordinate of the point. Determine the equation of the curve

Let C be a curve passing through M(2,2) such that the slope of the tangent at any point to the curve is reciprocal of the ordinate of the point. If the area bounded by curve C and line x=2 is A, then the value of (3A)/(2) is__.

The curve for which the slope of the tangent at any point is equal to the ration of the abcissa to the ordinate of the point is