Home
Class 12
PHYSICS
A function y=f(x) satisfies A function y...

A function `y=f(x)` satisfies A function `y=f(x)` satisfies` f" (x)= -1/x^2 - pi^2 sin(pix) ; f'(2) = pi+1/2` and` f(1)=0`. The value of `f(1/2)` then

A

a.`f((1)/(2))=1-ln2`

B

b.`f((1)/(.2))=(pi)/(2)-ln2`

C

c.`f(x)=0`has exactly 3 roots

D

d.`f(x)=0` has exactly one root

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript. ### Step 1: Start with the second derivative We are given that: \[ f''(x) = -\frac{1}{x^2} - \pi^2 \sin(\pi x) \] ### Step 2: Integrate to find the first derivative Integrate \( f''(x) \) with respect to \( x \): \[ f'(x) = \int f''(x) \, dx = \int \left(-\frac{1}{x^2} - \pi^2 \sin(\pi x)\right) \, dx \] The integral of \( -\frac{1}{x^2} \) is \( \frac{1}{x} \) and the integral of \( -\pi^2 \sin(\pi x) \) is \( \frac{\pi}{\pi^2} \cos(\pi x) = -\frac{1}{\pi} \cos(\pi x) \). Thus, \[ f'(x) = \frac{1}{x} + \frac{\pi}{\pi^2} \cos(\pi x) + C_1 \] or simplifying, \[ f'(x) = \frac{1}{x} + \frac{1}{\pi} \cos(\pi x) + C_1 \] ### Step 3: Use the condition \( f'(2) = \pi + \frac{1}{2} \) Substituting \( x = 2 \) into the equation for \( f'(x) \): \[ f'(2) = \frac{1}{2} + \frac{1}{\pi} \cos(2\pi) + C_1 \] Since \( \cos(2\pi) = 1 \): \[ f'(2) = \frac{1}{2} + \frac{1}{\pi} + C_1 = \pi + \frac{1}{2} \] ### Step 4: Solve for \( C_1 \) Setting the equation: \[ \frac{1}{2} + \frac{1}{\pi} + C_1 = \pi + \frac{1}{2} \] Subtract \( \frac{1}{2} \) from both sides: \[ \frac{1}{\pi} + C_1 = \pi \] Thus, \[ C_1 = \pi - \frac{1}{\pi} \] ### Step 5: Substitute \( C_1 \) back into \( f'(x) \) Now we have: \[ f'(x) = \frac{1}{x} + \frac{1}{\pi} \cos(\pi x) + \left(\pi - \frac{1}{\pi}\right) \] ### Step 6: Integrate to find \( f(x) \) Integrate \( f'(x) \): \[ f(x) = \int f'(x) \, dx = \int \left(\frac{1}{x} + \frac{1}{\pi} \cos(\pi x) + \pi - \frac{1}{\pi}\right) \, dx \] This gives: \[ f(x) = \ln |x| + \frac{1}{\pi^2} \sin(\pi x) + \pi x - \frac{1}{\pi} x + C_2 \] ### Step 7: Use the condition \( f(1) = 0 \) Substituting \( x = 1 \): \[ f(1) = \ln(1) + \frac{1}{\pi^2} \sin(\pi) + \pi(1) - \frac{1}{\pi}(1) + C_2 = 0 \] Since \( \ln(1) = 0 \) and \( \sin(\pi) = 0 \): \[ \pi - \frac{1}{\pi} + C_2 = 0 \] Thus, \[ C_2 = -\pi + \frac{1}{\pi} \] ### Step 8: Final expression for \( f(x) \) Substituting \( C_2 \) back into \( f(x) \): \[ f(x) = \ln |x| + \frac{1}{\pi^2} \sin(\pi x) + \pi x - \frac{1}{\pi} x - \pi + \frac{1}{\pi} \] ### Step 9: Calculate \( f(1/2) \) Now we need to find \( f(1/2) \): \[ f\left(\frac{1}{2}\right) = \ln\left(\frac{1}{2}\right) + \frac{1}{\pi^2} \sin\left(\frac{\pi}{2}\right) + \pi \left(\frac{1}{2}\right) - \frac{1}{\pi} \left(\frac{1}{2}\right) - \pi + \frac{1}{\pi} \] \[ = -\ln(2) + \frac{1}{\pi^2} \cdot 1 + \frac{\pi}{2} - \frac{1}{2\pi} - \pi + \frac{1}{\pi} \] \[ = -\ln(2) + \frac{1}{\pi^2} + \frac{\pi}{2} - \pi + \frac{1}{2\pi} \] ### Final Result The value of \( f(1/2) \) is: \[ f\left(\frac{1}{2}\right) = -\ln(2) + \frac{1}{\pi^2} + \frac{\pi}{2} - \pi + \frac{1}{2\pi} \]
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise PHYSICS|17 Videos
  • TEST PAPER 4

    ALLEN|Exercise PHYSICS|44 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

For x inR - {1} , the function f(x ) satisfies f(x) + 2f(1/(1-x))=x . Find f(2) .

An even polynomial function f(x) satisfies a relation f(2x)(1-f(1/(2x)))+f(16x^2y)=f(-2)-f(4x y) \ AAx ,y in R-{0} and f(4)=-255 ,f(0)=1. Then the value of |(f(2)+1)//2| is_________

If the function f(x) satisfies (lim)_(x->1)(f(x)-2)/(x^2-1)=pi, evaluate (lim)_(x->1)f(x)

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

A function f : R→R satisfies the equation f(x)f(y) - f(xy) = x + y ∀ x, y ∈ R and f (1)>0 , then

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2 , then

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is