Home
Class 12
PHYSICS
Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^...

Let `(1+x^2)^2(1+x)^n=sum_(k=0)^(n+4)a_k x^k`. If `a_1`, `a_2` and `a_3` are in arithmetic progression, then the possible value/values of `n` is/are a. 5 b. 4 c. `3` d. `2`

A

5

B

4

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
B, C, D
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise PHYSICS|17 Videos
  • TEST PAPER 4

    ALLEN|Exercise PHYSICS|44 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

Let (1+x^2)^2 . (1+x)^n = Sigma_(k=0)^(n+4) (a_k).x ^k "if" a_1,a_2 & a_3 are in AP find n

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is

Let A_1 , A_2 …..,A_3 be n arithmetic means between a and b. Then the common difference of the AP is

If for n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum_(k=0)^n a_k*x^k , x!=0 then

Let a_1,a_2,a_3,... be in harmonic progression with a_1=5a n da_(20)=25. The least positive integer n for which a_n<0 a. 22 b. 23 c. 24 d. 25

If x^n-1 is divisible by x-k then the least positive integral value of k is(a) 1 (b) 2 (c) 3 (d) 4

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+....+a_(n-1)+3a_n is

Consider an A.P. a_1, a_2, a_3,......... such that a_3+a_5+a_8=11 and a_4+a_2=-2, then the value of a_1+a_6+a_7 is (a). -8 (b). 5 (c). 7 (d). 9

If a_1+a_2+a_3+......+a_n=1 AA a_i > 0, i=1,2,3,......,n , then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n .

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+.......a_(n-1)+2a_n is