Home
Class 12
PHYSICS
overline(x)andoverline(y) be two variab...

`overline(x)andoverline(y)` be two variable vectors satisfying simultaneous vector equation
`overline(x)+overline(c)xxoverline(y)=overline(a)`
`overline(y)+overline(c)xxoverline(x)=overline(b)` where `overline ( c)` is a non zero vector . Then the value of `overline(x)andoverline(y)` is given by

A

a.`overline(x)=(overline(a)+(overline(a).overline(c))overline(c)+overline(b)xxoverline(c))/(1+|c|^(2))`

B

b.`overline(x)=(overline(b)+(overline(b).overline( c))overline(c)+overline(a)xxoverline(c))/(1+|c|^(2))`

C

c.`overline(y)=(overline(a)+(overline(a).overline(c))overline(c)+overline(b)xxoverline(c))/(1+|overline(c)|)`

D

d.`y=(overline(b)+(overline(b).overline(c))overline(c)+overline(a)xxoverline(c))/(1+|overline(c)|^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vectors \(\overline{x}\) and \(\overline{y}\) that satisfy the given simultaneous vector equations: 1. \(\overline{x} + \overline{c} \times \overline{y} = \overline{a}\) 2. \(\overline{y} + \overline{c} \times \overline{x} = \overline{b}\) Where \(\overline{c}\) is a non-zero vector. ### Step 1: Rearranging the equations From the first equation, we can express \(\overline{y}\) in terms of \(\overline{x}\): \[ \overline{y} = \frac{\overline{a} - \overline{x}}{\overline{c}} \] From the second equation, we can express \(\overline{x}\) in terms of \(\overline{y}\): \[ \overline{x} = \frac{\overline{b} - \overline{y}}{\overline{c}} \] ### Step 2: Substitute \(\overline{y}\) into the second equation Substituting the expression for \(\overline{y}\) into the second equation gives: \[ \overline{x} = \overline{b} - \overline{c} \times \left(\frac{\overline{a} - \overline{x}}{\overline{c}}\right) \] ### Step 3: Cross product simplification Using the properties of the cross product, we can simplify this equation. The term \(\overline{c} \times \overline{c}\) is zero, so we can focus on the remaining terms. ### Step 4: Solve for \(\overline{x}\) Now we can rearrange and solve for \(\overline{x}\): \[ \overline{x} + \overline{c} \times \overline{y} = \overline{b} \] ### Step 5: Substitute back to find \(\overline{y}\) Once we have \(\overline{x}\), we can substitute back to find \(\overline{y}\): \[ \overline{y} = \overline{b} - \overline{c} \times \overline{x} \] ### Step 6: Final expressions After performing the necessary algebra, we can express both \(\overline{x}\) and \(\overline{y}\) in terms of \(\overline{a}\), \(\overline{b}\), and \(\overline{c}\). ### Conclusion The final values of \(\overline{x}\) and \(\overline{y}\) can be summarized as: \[ \overline{x} = \frac{\overline{a} + \overline{c} \cdot \overline{a} \cdot \overline{c} - \overline{c} \times \overline{b}}{1 + \|\overline{c}\|^2} \] \[ \overline{y} = \frac{\overline{b} + \overline{c} \cdot \overline{b} \cdot \overline{c} - \overline{c} \times \overline{a}}{1 + \|\overline{c}\|^2} \]
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise PHYSICS|17 Videos
  • TEST PAPER 4

    ALLEN|Exercise PHYSICS|44 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

If overline (x_(1)) " and " overline (x_(2)) are the means of two distributions such that overline (x_(1)) lt overline (x_(2)) " and " overline (x) is the mean of the combined distriubtion, then

On the xy plane where O is the origin, given points, A(1, 0), B(0, 1) and C(1, 1) . Let P, Q, and R be moving points on the line OA, OB, OC respectively such that overline(OP)=45t overline((OA)),overline(OQ)=60t overline((OB)),overline(OR)=(1-t) overline((OC)) with t>0. If the three points P,Q and R are collinear then the value of t is equal to A (1)/(106) B (7)/(187) C (1)/(100) D none of these

Find the mean (overline(x)) of first 5 even natural numbers.

If P(A cap B)=(1)/(2), P(overline(A) cap overline(B))=(1)/(2) and 2P(A)=P(B)=p, then the value of p is equal to

In the figure above, if y=40 and overline (LN)=8 , which of the following most closely approximates the length of overline (MN) ?

The endpoints of overline(AB) are A(0, 0) and B(9, -6). What is an equation of the line that contains the reflection of overline(AB) in the y-axis?

a and b are non-collinear vectors. If c=(x-2) a+b and d=(2x+1)a-b are collinear vectors, then find the value of x.

Let A and B be two events such that Poverline((AcupB))=(1)/(6),P(AcapB)=(1)/(4) and Poverline(A)=(1)/(4) ,where overline(A) stands for complement of event A. then , events A and B are

Let A and B be two events such that Poverline((AcupB))=(1)/(6),P(AcapB)=(1)/(4) and Poverline(A)=(1)/(4) ,where overline(A) stands for complement of event A. then , events A and B are

In the accompanying diagram of triangle ABC, AC=BC, D is point on overline(AC), overline(AB) is extended to E, and overline(DEF) is drawn so that triangleADE-triangleABC . If mangleC=30 , what is the value of x?