Home
Class 12
PHYSICS
In a problem of differentiation of (f(x...

In a problem of differentiation of `(f(x))/(g(x))`, one student writes the derivative of `(f(x))/(g(x))` as `(f'(x))/(g'(x))` and he finds the correct result . If `g(x)=x^(2)and lim_(xtooo) f(x)=4` On the basis of above information , answer the following questions :
The function `f(x)` is

A

a.`(4x)/((x-2))`

B

b.`(4x^(2))/((2-x)^(2))`

C

c.`(4x^(2))/(x^(2)+x+1)`

D

d.`(4x^(2))/((4-x)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) based on the given information, we will follow these steps: ### Step 1: Understand the given information We know that: - \( g(x) = x^2 \) - \( \lim_{x \to \infty} f(x) = 4 \) ### Step 2: Apply the Quotient Rule for differentiation The derivative of \( \frac{f(x)}{g(x)} \) is given by the quotient rule: \[ \left( \frac{f(x)}{g(x)} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \] Substituting \( g(x) = x^2 \) and \( g'(x) = 2x \), we have: \[ \left( \frac{f(x)}{x^2} \right)' = \frac{x^2 f'(x) - f(x) \cdot 2x}{(x^2)^2} = \frac{x^2 f'(x) - 2x f(x)}{x^4} \] ### Step 3: Analyze the student's incorrect differentiation The student incorrectly wrote the derivative as: \[ \frac{f'(x)}{g'(x)} = \frac{f'(x)}{2x} \] This means they equated: \[ \frac{x^2 f'(x) - 2x f(x)}{x^4} = \frac{f'(x)}{2x} \] ### Step 4: Cross-multiply and simplify Cross-multiplying gives: \[ 2x(x^2 f'(x) - 2x f(x)) = x^4 f'(x) \] Expanding this results in: \[ 2x^3 f'(x) - 4x^2 f(x) = x^4 f'(x) \] Rearranging leads to: \[ 2x^3 f'(x) - x^4 f'(x) = 4x^2 f(x) \] Factoring out \( f'(x) \): \[ f'(x)(2x^3 - x^4) = 4x^2 f(x) \] ### Step 5: Rearranging the equation We can write: \[ f'(x) = \frac{4x^2 f(x)}{x^4 - 2x^3} \] This simplifies to: \[ f'(x) = \frac{4 f(x)}{x(2 - x)} \] ### Step 6: Separate variables and integrate Rearranging gives: \[ \frac{f'(x)}{f(x)} = \frac{4}{x(2 - x)} \] Integrating both sides: \[ \int \frac{f'(x)}{f(x)} \, dx = \int \frac{4}{x(2 - x)} \, dx \] The left side integrates to \( \ln |f(x)| \). ### Step 7: Solve the right side integral Using partial fractions: \[ \frac{4}{x(2 - x)} = \frac{A}{x} + \frac{B}{2 - x} \] Solving gives \( A = 2 \) and \( B = 2 \): \[ \int \left( \frac{2}{x} + \frac{2}{2 - x} \right) dx = 2 \ln |x| - 2 \ln |2 - x| + C \] ### Step 8: Combine results Thus, \[ \ln |f(x)| = 2 \ln |x| - 2 \ln |2 - x| + C \] Exponentiating gives: \[ f(x) = e^C \frac{x^2}{(2 - x)^2} \] Letting \( e^C = k \), we have: \[ f(x) = k \frac{x^2}{(2 - x)^2} \] ### Step 9: Use the limit to find \( k \) Using the limit condition \( \lim_{x \to \infty} f(x) = 4 \): \[ \lim_{x \to \infty} k \frac{x^2}{(2 - x)^2} = 4 \] As \( x \to \infty \), \( f(x) \) approaches \( k \) since \( \frac{x^2}{x^2} \to 1 \): \[ k = 4 \] ### Final Result Thus, the function is: \[ f(x) = 4 \frac{x^2}{(2 - x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    ALLEN|Exercise PHYSICS|17 Videos
  • TEST PAPER 4

    ALLEN|Exercise PHYSICS|44 Videos
  • UNIT & DIMENSIONS, BASIC MATHS AND VECTOR

    ALLEN|Exercise Exercise (J-A)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=3x-2 and g(x)=x^(2)-4 , write an expresion for each of the following functions: (f+g)(x)

If f(x)=3x-2 and g(x)=x^(2)-4 , write an expresion for each of the following functions: (f-g)(x)

If f(x)=3x-2 and g(x)=x^(2)-4 , write an expresion for each of the following functions: (f*g)(x)

If f(x)=3x-2 and g(x)=x^(2)-4 , write an expresion for each of the following functions: (f@g)(x)

If f(x)=3x-2 and g(x)=x^(2)-4 , write an expresion for each of the following functions: (g@f)(x)

If differentiable function f(x) in inverse of g(x) then f^(g(x)) is equal to (g^(x))/((g^(prime)(x))^3) 2. 0 3. (g^(x))/((g^(prime)(x))^2) 4. 1

If f(x)=(x^2)/(|x|) , write d/(dx)(f(x))

If f(x)=(a x^2+b)^3, then find the function g such that f(g(x))=g(f(x))dot

Differentiate the following functions: Given f(x) = (7)/(4) x^(2) , find f'((1)/(7))

If f(x) =x^(2)andg(x)=2x+1 are two real valued function, then evaluate : (f+g)(x),(f-g)(x),(fg)(x),(f)/(g)(x)