Home
Class 11
MATHS
In a triangle ABC ,(a^2-b^2-c^2) tan A +...

In a triangle ABC ,`(a^2-b^2-c^2) tan A +(a^2-b^2+c^2)` tan B is equal to

A

`(a^2+b^2-c^2) tan C`

B

`(a^2+b^2+c^2) tan C`

C

`(b^2+c^2-a^2) tan C `

D

none of these

Text Solution

AI Generated Solution

To solve the problem, we need to simplify the expression \((a^2 - b^2 - c^2) \tan A + (a^2 - b^2 + c^2) \tan B\) in triangle ABC. ### Step-by-Step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ (a^2 - b^2 - c^2) \tan A + (a^2 - b^2 + c^2) \tan B ...
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Illustration|28 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|28 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC , (tan(A/2)-tan(B/2))/(tan(A/2)+tan(B/2)) is equal to

In a triangle ABC, a^2cos^2A=b^2+c^2 then triangle is

In a triangle ABC, if 2 a cos ( B − C 2 ) = b + c , then secA is equal to :

Show that in any triangle ABC, (a+b+c) (tan (A/2) + tan (B/2)) = 2c cot (C/2)

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

If in a triangle ABC , tan A/2 and tan B/2 are the roots of the equation 6x^(2)-5x+1=0 , then

If in a triangle ABC, b + c = 3a, then tan (B/2)tan(C/2) is equal to

(b^(2)-c^(2)) tan B tan C+(c^(2)-a^(2)) tan C tan A+(a^(2)-b^(2)) tan A tan B=0

In a DeltaABC,(a+c)/(a-c)tan(B/2) is equal to

In a triangle ABC, if 2a cos ((B-C)/(2))=b+c , then secA is equal to :