Home
Class 11
MATHS
Prove that (i) C(1)+2C(2)+3C(3)+……+nC(...

Prove that (i) `C_(1)+2C_(2)+3C_(3)+……+nC_(n)=n.2^(n-1)`
(ii) `C_(0)+(C_(1)/(2)+(C_(2))/(3)+….+(C_(n))/(n+1)=(2^(n+1)-1)/(n+1)`

Text Solution

Verified by Experts

LHS. .`=underset(r=1)overset(n)Sigma r.""^(n)C_(r)==underset(r=1)overset(n)Sigma r.""^(n-1)C_(r-1)`
`underset(r=1)overset(n)Sigmar.n/r.""^(n-1)C_(r-1)`
`n=underset(r=1)overset(n)SigmaC_(r-1)=n[""^(n-1)C_(0)+""^(n=1)C_(1)+.....+""^(n+1)C_(n+1)]`
`=n.2^(n-1)`
Aliter :(using method of differentiation )
Intergrating (A) we get
`=((1+x)^(n) = ""^(n)C_(0)+""^(C)_(2)x^(2)+.....+ ""^(n)C_(n)x^(n)`
Differentitating (A) we get
` n(1+x)^(n+1)=C_(1)+2C_(2)x+3C_(3)X^2+...+n.C_(n)x^(n+1)`
Put X=1
`C_(1)+2C_(2)+3C_(3)+...+n.C_(n)=n.2^(n-1)`
(ii) ` L.H.S = underset(r=0)overset(n)Sigma(C_(r))/(r+1)=(1)/(n+1)underset(r=0)overset(n)Sigma (n+1)/(r+1)""^(n)C_(r)`
`=(1)/(n+1)underset(r=0)overset(n)Sigma^(n+1)C_(r+1)=(1)/(n+1)[""^(n+1)C_(1)+""^(n+1)C_(2)+......+""^(n+1)C_(n+1)]=(1)/(n+1)]=(1)/(n+1)[2^(n+1)-1]`
`((1+x)^(n+1))/(n+1)+C=C_(0)x+(C_(1)x^2)/(2)+(C_(2)x^3)/(3)+.....+(C_(n)x^(n+1))/(n+1)` (where C is a constant )
put =0 ,we get `C=-(1)/(n+1)`
`therefore ((1+x)^(n+1)-1)/(n+1)=C_(0)x+(C_(1)x^2)/(2)+(C_(2)x^3)/(3)+....+(C_(n)x^(n+1))/(n+1)`
Put x=1,we get `C_(0)(C_(1))/(2)+C_(2)/3+....+C_(n)/(n+1)=(2^(n+1)-1)/(n+1)`
Put x=1,we get `C_(0)(C_(1))/(2)+C_(2)/3+....=(1)/(n+1)`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|28 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If C_(0),C_(1),C_(2)…….,C_(n) are the combinatorial coefficient in the expansion of (1+x)^n, n, ne N , then prove that following C_(1)+2C_(2)+3C_(3)+..+n.C_(n)=n.2^(n-1) C_(0)+2C_(1)+3C_(2)+......+(n+1)C_(n)=(n+2)C_(n)=(n+2)2^(n-1) C_(0),+3C_(1)+5C_(2)+.....+(2n+1)C_n =(n+1)2^n (C_0+C_1)(C_1+C_2)(C_2+C_3)......(C_(n-1)+C_n)=(C_0.C_1.C_2....C_(n-1)(n+1)^n)/(n!) 1.C_0^2+3.C_1^2+....+ (2n+1)C_n^2=((n+1)(2n)!)/(n! n!)

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+….+C_(n).x^(n). then prove that (i) C_(0)+2C_(1)+3C_(2)+…+(n-1)C_(n)=(n+2).2^(n-1) (ii)C_(0)+3C_(1)+5C_(2)+...+(2n+1)C_(n)=(n+1).2^(n)

Prove that C_(1)^(2)-2*C_(2)^(2)+3*C_(3)^(2)-…-2n*C_(2n)^(2)=(-1)^(n)n*C_(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) , show that C_(1) - (C_(2))/(2) + (C_(3))/(3) - …(-1)^(n-1) (C_(n))/(n) = 1 + (1)/(2) + (1)/(3) + …+ (1)/(n) .

Prove that C_0 + 2.C_1 + 4.C_2 + 8.C_3 + ……+2^n.C_n = 3^n

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find the term independent of x in the expansion off the following ex...

    Text Solution

    |

  2. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  3. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  4. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n-1) (ii) C(0)+(C(1)...

    Text Solution

    |

  5. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1) x + C(2)x^(2) + C(3) x^(3)+ …+ C(n) x^(n...

    Text Solution

    |

  7. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  8. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  9. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  10. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  11. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  12. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  13. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  14. If (1+x+x^2)^n = underset(2n)overset(r=0)Sigma a (r)x^r then prove th...

    Text Solution

    |

  15. If f ( x ) = [ x ] , where [ ⋅ ] denotes greatest integral function...

    Text Solution

    |

  16. Find the last three digits in 11^(50)

    Text Solution

    |

  17. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  18. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  19. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |

  20. If (1+x+x^2)^n = Sigma(2n)^(r=0) a (r)x^r then prove that (a) a(r...

    Text Solution

    |