Home
Class 11
MATHS
If (1+x)^n=underset(r=0)overset(n)C(r)x^...

If `(1+x)^n=underset(r=0)overset(n)C_(r)x^r` then prove that `C_(1)^2+2.C_(2)^(2)+3.C_(3)^2 +…….+n.C_(n)^(2)=((2n-1)!/((n-1)!)^2`

Text Solution

Verified by Experts

`(1+x)^(n)=C_0+C_(1)x+C_(2)x^2+C_(2)x^3+......+C_(n)x^n..........(i)`
Differentiating both the sides ,w.r.t x, we get
`n(1+x)^(n-1)=C_(1)+2C_(2)x+3C_(2)x^2+....+n.C_(n)x^(n+1)....(ii)`
also ,we have
`(x+1)^(n)=C_(0)x^n+C_(1)x^(n-1)+C_(2)x^(n-2)+.....+C_(n).....(iii)`
Equating the coefficients of `x^(n-1)` we get
`(C_(1)^(2)+2C_(2)^(2)+3C_(3)^2+.....+C_(n)x^(n-1))(C_(0)x^(n-1)+C_(2)x^(n-2)+......+C_(n))=n(1+x)^(2n-1)`
Equating the coffiecients of `x^(n-1)` we get
`C_(1)^2+2C_2^2+3C_3^2+.....+n.C_n^2=n.""^(2n-1)C_(n-1)=((2n-1)!)/(((n-1)!)^2)`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|28 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n=sum_(r=0)^n C_r x^r , then prove that C_1+2C_2+3C_3+....+n C_n=n2^(n-1)dot .

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

Prove that C_1/C_0+(2c_(2))/C_1+(3C_3)/(C_2)+......+(n.C_n)/(C_(n-1))=(n(n+1))/2

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

If (1+2x+x^2)^n=sum_(r=0)^(2n)a_r x^r ,then a_r is a. (.^nC_2)^2 b. .^n C_r .^n C_(r+1) c. .^(2n) C_r d. .^(2n) C_(r+1)

Let (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r) and , (C_(1))/(C_(0)) + 2 (C_(2))/(C_(1)) + (C_(3))/(C_(2)) +…+ n (C_(n))/(C_(n-1)) = (1)/(k) n(n+1) , then the value of k, is

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find the term independent of x in the expansion off the following ex...

    Text Solution

    |

  2. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  3. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  4. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n-1) (ii) C(0)+(C(1)...

    Text Solution

    |

  5. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1) x + C(2)x^(2) + C(3) x^(3)+ …+ C(n) x^(n...

    Text Solution

    |

  7. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  8. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  9. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  10. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  11. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  12. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  13. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  14. If (1+x+x^2)^n = underset(2n)overset(r=0)Sigma a (r)x^r then prove th...

    Text Solution

    |

  15. If f ( x ) = [ x ] , where [ ⋅ ] denotes greatest integral function...

    Text Solution

    |

  16. Find the last three digits in 11^(50)

    Text Solution

    |

  17. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  18. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  19. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |

  20. If (1+x+x^2)^n = Sigma(2n)^(r=0) a (r)x^r then prove that (a) a(r...

    Text Solution

    |