Home
Class 11
MATHS
If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n t...

If `(1+x)^n=C_(0)C_1c+C_(2)x^2+…..+C_(n)x^n` then show that the sum of the products of the `C_(i)` taken two at a time represented by :`Sigma_(0 le I lt) Sigma_( j le n) C_(i)C_(j)` "is equal to " 2^(2n-1)-(2n!)/(2.n! n !)`

Text Solution

AI Generated Solution

To solve the problem, we need to show that the sum of the products of the coefficients \( C_i \) taken two at a time is equal to \( 2^{2n-1} - \frac{(2n)!}{(2.n)! n!} \). ### Step 1: Understand the coefficients \( C_i \) The coefficients \( C_i \) in the expansion of \( (1+x)^n \) are given by the binomial theorem: \[ C_i = \binom{n}{i} \] ...
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|28 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^n=C_0+C_1x+C_2x^2+.......+C_n x^n , then show that the sum of the products of the coefficients taken two at a time, represented by sumsum_(0lt=iltjlt=n) "^nc_i "^n c_j is equal to 2^(2n-1)-((2n)!)/ (2(n !)^2)

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

If (1+x)^n = C_0 + C_1x + C_2x^2 + ……..+C_n.x^n then find C_0 - C_2 + C_4 - C_6 + …….

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following (sumsum)_(0leilt j le n)jC_(i)

If (1+x)^n=C_0+C_1x+C_2x^2=……..+C_nx^n show that sum_(r=0)^(n-3) C_r C_(r+3) = ((2n)!)/((n+3)!(n-3)!)

If (1+x)^n=C_(0)+C_(1)x+C_(2)x^2+….+C_(n)x^n then prove that (SigmaSigma)_(0 le i lt j le n ) C_(i)C_(j)^2=(n-1)^(2n)C_(n)+2^(2n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +…+ C_(n) x^(n) , find the values of the following . sum_(i=0)^(n) sum_(j=0)^(n) (i+j) C_(i) C_(j)

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find the term independent of x in the expansion off the following ex...

    Text Solution

    |

  2. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  3. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  4. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n-1) (ii) C(0)+(C(1)...

    Text Solution

    |

  5. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1) x + C(2)x^(2) + C(3) x^(3)+ …+ C(n) x^(n...

    Text Solution

    |

  7. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  8. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  9. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  10. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  11. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  12. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  13. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  14. If (1+x+x^2)^n = underset(2n)overset(r=0)Sigma a (r)x^r then prove th...

    Text Solution

    |

  15. If f ( x ) = [ x ] , where [ ⋅ ] denotes greatest integral function...

    Text Solution

    |

  16. Find the last three digits in 11^(50)

    Text Solution

    |

  17. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  18. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  19. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |

  20. If (1+x+x^2)^n = Sigma(2n)^(r=0) a (r)x^r then prove that (a) a(r...

    Text Solution

    |