Home
Class 11
MATHS
If (1+x+x^2)^n = underset(2n)overset(r=0...

If `(1+x+x^2)^n = underset(2n)overset(r=0)Sigma a _(r)x^r` then prove that
(a) `a_(r)= 20_(2n-r)`
(b) `underset(r=0)overset(2 n)Sigma a_(r) = 1/2 (3^n-a_(n))`

Text Solution

Verified by Experts

We have
` (1+x+x^2)^n = underset(r=0)overset(2n)Sigma a_(r) x^r`
Replace x by 1/x
`therefore (1 +1/x+1/(x^2))^n = underset(r=0)overset(2n) Sigma a_(r)((1)/(x))^r`
`rArr (x^2+x+1)^n = underset( r=0)overset(2n)Sigma a_rx^(2n-r)`
`underset(r=0)overset(2n ) a_(r)x^r =underset(r=0)overset(2n ) a_(r)x^r " " {"Using (A) "}`
Equating the cofficient of `x^(2n-r)` on the both sides ,we get
`a_(2n-r)= a_(r) " for " 0 le r le 2n`
Hence `a_(r)=a_(2n-r)`
(b) Putting x=1 in given series , then
`a_(0)+a_1 +a_2+......+a_(2n)=(1+1+1)^n`
`a_(0)+a_(1)+a_(2)+...... +a_(2n)=3^n`
But `a^r= a_(2n-r) for 0 le r le4 2 n `
`therefore ` Series (1) reduces to
`2(a_(0)+a_1+a_2+.......+a_(n-1)) + a_n =3^n`
`therefore a_0+a_1+a_2+........+a_(n-1)= 1/2 (3^n-a_n)`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|28 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Do yourself -6|4 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (1+x+x^2)^n = Sigma_(2n)^(r=0) a _(r)x^r then prove that (a) a_(r)= 20_(2n-r) (b) Sigma_(2n)^(r=0) a_(r) = 1/2 (3^n-a_(n))

"If" n in "and if "(1+ 4x +4 x^2)^n=underset(r=0)overset(2n)Sigma a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of 2 underset(r=0) overset (n) Sigma_(2r) is

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

If (1+x)^n=underset(r=0)overset(n)C_(r)x^r then prove that C_(1)^2+2.C_(2)^(2)+3.C_(3)^2 +…….+n.C_(n)^(2)=((2n-1)!/((n-1)!)^2

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

If in the expansion of (1-x)^(2n-1) a_r denotes the coefficient of x^r then prove that a_(r-1) +a_(2n-r)=0

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

let underset(r=0)overset(2010)(sum)a_(r)x^(r)=(1+x+x^(2)+x^(3)+x^(4)+x^(5))^(402) and underset(r=0)overset(2010)(sum)a_(r)=a, then the value of ((underset(r=0)overset(2010)(sum)r.a_(r))/(underset(r=0)overset(2010)(sum)a_(r))) is equal to____.

ALLEN-Solutions of Triangle & Binomial Theorem-Illustration
  1. Find the term independent of x in the expansion off the following ex...

    Text Solution

    |

  2. Prove that : ""^(25)C(10)+""^(24)C(10)+……..+""^(10)C(10)=""^(26)C(11)

    Text Solution

    |

  3. A student is allowed to select at most n books from a collection of (...

    Text Solution

    |

  4. Prove that (i) C(1)+2C(2)+3C(3)+……+nC(n)=n.2^(n-1) (ii) C(0)+(C(1)...

    Text Solution

    |

  5. If (1+x)^n=underset(r=0)overset(n)C(r)x^r then prove that C(1)^2+2.C(2...

    Text Solution

    |

  6. If (1 + x)^(n) = C(0) + C(1) x + C(2)x^(2) + C(3) x^(3)+ …+ C(n) x^(n...

    Text Solution

    |

  7. Prove that (""^(2n)C(0))^2-(""^(2n)C(1))^2+(""^(2n)C(2))^2-.....+(-1)^...

    Text Solution

    |

  8. Prove that : ""^(n)C(0).""^(2n)C(n)-""^(n)C(1).""^(2n-2)Cn(n)+""^(n)...

    Text Solution

    |

  9. If (1+x)^n=C(0)C1c+C(2)x^2+…..+C(n)x^n then show that the sum of the p...

    Text Solution

    |

  10. If (1+x)^n=C(0)+C(1)x+C(2)x^2+….+C(n)x^n then prove that (SigmaSigma)...

    Text Solution

    |

  11. Find the coffiecient of x^2 y^3 z^4 w in the expansion of (x-y-z+w)^(...

    Text Solution

    |

  12. Find the total number of terms in the expansion of 1(1+x+y)^(10) and c...

    Text Solution

    |

  13. Find the coffiecient of x^5 in the expansion of (2-x+ 3x ^2)^6

    Text Solution

    |

  14. If (1+x+x^2)^n = underset(2n)overset(r=0)Sigma a (r)x^r then prove th...

    Text Solution

    |

  15. If f ( x ) = [ x ] , where [ ⋅ ] denotes greatest integral function...

    Text Solution

    |

  16. Find the last three digits in 11^(50)

    Text Solution

    |

  17. Prove that 2222^(5555)+5555^(2222) is divisible by 7

    Text Solution

    |

  18. If x is so small such that its square and digher powers may be neglect...

    Text Solution

    |

  19. The value of cube root of 1001 upto five decimal places is

    Text Solution

    |

  20. If (1+x+x^2)^n = Sigma(2n)^(r=0) a (r)x^r then prove that (a) a(r...

    Text Solution

    |