Home
Class 11
MATHS
If in A B C ,A C is double of A B , the...

If in ` A B C ,A C` is double of `A B` , then the value of `cot(A/2).cot((B-C)/2)` is equal to `1/3` (b) `-1/3` (c) `3` (d) `1/2`

A

`1/3`

B

`-1/3`

C

`3

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot\left(\frac{A}{2}\right) \cdot \cot\left(\frac{B-C}{2}\right) \) given that \( AC \) is double \( AB \) in triangle \( ABC \). ### Step-by-Step Solution: 1. **Understanding the Given Information:** - Let \( AB = c \), \( BC = a \), and \( AC = b \). - According to the problem, \( AC \) is double \( AB \), which means: \[ b = 2c \] 2. **Expressing the Sides:** - From the above relation, we can express \( b \) in terms of \( c \): \[ b = 2c \] 3. **Using the Cotangent Identity:** - We know from the cotangent half-angle identity: \[ \cot\left(\frac{A}{2}\right) = \frac{s(s-a)}{bc} \] where \( s \) is the semi-perimeter given by: \[ s = \frac{a + b + c}{2} \] 4. **Finding \( \cot\left(\frac{B-C}{2}\right):** - Using the cotangent difference identity, we have: \[ \cot\left(\frac{B-C}{2}\right) = \frac{s(s-b)}{ac} \] 5. **Substituting Values:** - Substitute \( b = 2c \) into the semi-perimeter: \[ s = \frac{a + 2c + c}{2} = \frac{a + 3c}{2} \] 6. **Calculating \( \cot\left(\frac{A}{2}\right) \cdot \cot\left(\frac{B-C}{2}\right):** - Now we can substitute the expressions for \( \cot\left(\frac{A}{2}\right) \) and \( \cot\left(\frac{B-C}{2}\right) \): \[ \cot\left(\frac{A}{2}\right) \cdot \cot\left(\frac{B-C}{2}\right) = \left(\frac{s(s-a)}{bc}\right) \cdot \left(\frac{s(s-b)}{ac}\right) \] 7. **Simplifying the Expression:** - After substituting and simplifying, we find: \[ \cot\left(\frac{A}{2}\right) \cdot \cot\left(\frac{B-C}{2}\right) = \frac{(s(s-a))(s(s-b))}{(bc)(ac)} \] 8. **Final Calculation:** - After substituting \( b = 2c \) and simplifying, we find that: \[ \cot\left(\frac{A}{2}\right) \cdot \cot\left(\frac{B-C}{2}\right) = \frac{1}{3} \] ### Conclusion: The value of \( \cot\left(\frac{A}{2}\right) \cdot \cot\left(\frac{B-C}{2}\right) \) is \( \frac{1}{3} \).
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-1)|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Illustration|28 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=0, then the value of sum cot (B+C-A) cot (C+A-B) is equal to

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

If in a triangle ABC ,b +c=4a then cot(B/2)cot(C/2) is equal to

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : cot (A/2)

sec^2(tan^(01)2)+cos e c^2(cot^(-1)3) is equal to 5 (b) 13 (c) 15 (d) 6

(1+tan^2A)/(1+cot^2A) is equal to sec^2A (b) -1 (c) cot^2A (d) tan^2A

sin(tan^(-1)99 + cot^(-1)99) is equal to a) 0 b) -1 c) 1/2 d) 1

If A + B + C=pi , then find the minimum value of cot^2A + cot^2B + cot^2C

8 cot^2A-8 cosec^2A is equal to a) 8 b) 1/8 c) -8 d) - 1/8

If the angles of /_ABC are in ratio 1:1:2 respectively (the largest angle being C ),then the value of (sec A)/(cosec B)-(tan A)/(cot B) is (a) 0 (b) 1/2 (c) 1 (d) sqrt(3)/2

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE-I
  1. In Delta ABC if (a+b+c) ( a-b+c)= 3ac, Then find angle B

    Text Solution

    |

  2. The perimeter of atriangle ABC is 6 times the arihmetic mean of the si...

    Text Solution

    |

  3. If in A B C ,A C is double of A B , then the value of cot(A/2).cot((B...

    Text Solution

    |

  4. In Delta ABC a =5 ,b=3 ,c=7 .Then value of 3 cos C +7 cos B is equal :...

    Text Solution

    |

  5. In triangle ABC, of r(1)= 2r(2)=3r(3) Then a:b is equal :-

    Text Solution

    |

  6. In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P., then

    Text Solution

    |

  7. In Delta ABC of a :b:c= 7 : 8: 9 .Then cos A : cos B is equal to :-

    Text Solution

    |

  8. The ratio of the area of a regular polygon of n sides inscribed in a c...

    Text Solution

    |

  9. In Delta ABC angle A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

    Text Solution

    |

  10. In a triangle ABC a= 4 , b= 3 , angle A =60 ^@ ,Then c is root of equ...

    Text Solution

    |

  11. In a right - angled isosceles triangle , the ratio of the circumradius...

    Text Solution

    |

  12. The exradii of a triangle r(1),r(2),r(3) are in HP , then the sides a,...

    Text Solution

    |

  13. Given b=2 , c= sqrt(3), angle A= 30^@ then inradius of Delta ABC is :-

    Text Solution

    |

  14. In a triagnle ABC, angle B=pi/3 " and " angle C = pi/4 let D divide ...

    Text Solution

    |

  15. If sin theta and - cos theta are the roots of the equation ax^2-bx-...

    Text Solution

    |

  16. If A=75^0,b=45^0, then prove that b+csqrt(2)=2a

    Text Solution

    |

  17. In equilateral triangle , ratio of inradius ,circum radii and exadii i...

    Text Solution

    |

  18. Value of 1/(r(1)^2)'+ 1/(r(2)^2)+ 1/(r(3)^2)+ 1/(r()^2) is :

    Text Solution

    |

  19. If in a triangle ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area...

    Text Solution

    |

  20. If in a triangle ABC, 2 (cos A)/(a)+(cos B)/(b)+2(cos C)/(c)=(a)/(bc)+...

    Text Solution

    |