Home
Class 11
MATHS
In any Delta ABC , cot(A/2),cot(B/2),c...

In any `Delta ABC` , `cot(A/2),cot(B/2),cot(C/2)` are in `A.P.`, then

A

A.P

B

G.P

C

H.P

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( \cot\left(\frac{A}{2}\right), \cot\left(\frac{B}{2}\right), \cot\left(\frac{C}{2}\right) \) are in arithmetic progression (A.P.), then we can derive a relationship involving the angles of triangle \( ABC \). ### Step-by-Step Solution: 1. **Understanding A.P. Condition**: Since \( \cot\left(\frac{A}{2}\right), \cot\left(\frac{B}{2}\right), \cot\left(\frac{C}{2}\right) \) are in A.P., we can write: \[ 2 \cot\left(\frac{B}{2}\right) = \cot\left(\frac{A}{2}\right) + \cot\left(\frac{C}{2}\right) \] 2. **Using the Angle Sum Property**: We know that in triangle \( ABC \), the sum of angles is: \[ A + B + C = 180^\circ \] Thus, we can express \( B \) as: \[ B = 180^\circ - A - C \] 3. **Substituting for \( B \)**: We can substitute this expression into our A.P. condition: \[ 2 \cot\left(\frac{180^\circ - A - C}{2}\right) = \cot\left(\frac{A}{2}\right) + \cot\left(\frac{C}{2}\right) \] 4. **Simplifying the Cotangent**: Using the property \( \cot(90^\circ - x) = \tan(x) \), we can rewrite: \[ \cot\left(\frac{180^\circ - A - C}{2}\right) = \tan\left(\frac{A + C}{2}\right) \] Therefore, we have: \[ 2 \tan\left(\frac{A + C}{2}\right) = \cot\left(\frac{A}{2}\right) + \cot\left(\frac{C}{2}\right) \] 5. **Using Cotangent Addition Formula**: We know that: \[ \cot\left(\frac{A}{2}\right) + \cot\left(\frac{C}{2}\right) = \frac{\sin\left(\frac{A}{2}\right) + \sin\left(\frac{C}{2}\right)}{\sin\left(\frac{A}{2}\right) \sin\left(\frac{C}{2}\right)} \] Thus, we can express our equation as: \[ 2 \tan\left(\frac{A + C}{2}\right) = \frac{\sin\left(\frac{A}{2}\right) + \sin\left(\frac{C}{2}\right)}{\sin\left(\frac{A}{2}\right) \sin\left(\frac{C}{2}\right)} \] 6. **Final Relationship**: After simplification, we arrive at: \[ 3 \tan\left(\frac{A}{2}\right) \tan\left(\frac{C}{2}\right) = 1 \] This implies: \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{C}{2}\right) = \frac{1}{3} \] ### Conclusion: Thus, we conclude that if \( \cot\left(\frac{A}{2}\right), \cot\left(\frac{B}{2}\right), \cot\left(\frac{C}{2}\right) \) are in A.P., then: \[ \tan\left(\frac{A}{2}\right) \tan\left(\frac{C}{2}\right) = \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-1)|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Illustration|28 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

In any Delta ABC , If cot ""A/2 , cot ""B/2 ,cot ""C/2 are in AP, then a,b,c are in (A) A.P, (b)G.P., (c)H.P., (d)NONE OF THESE

In DeltaABC , if a,b,c are in A.P. prove that: cot(A/2),cot(B/2), cot(C/2) are also in A.P.

If acos^2(C/2)+c cos^2(A/2)=(3b)/2 . To prove: cot(A/2),cot(B/2),cot(C/2) are in A.P.

If three sides a,b,c of a triangle ABC are in arithmetic progression, then the value of cot(A/2), cot(B/2), cot(C/2) are in

In a Delta ABC tan ""A/2, tan ""B/2, tan ""C/2 are in H.P., then the vlaue iof cot ""A/2 cot ""C/2 is :

In any DeltaABC , prove that cot (A/2) + cot (B/2) + cot (C/2) = (a+b+c)/(b+c-a) cot (A/2)

In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

In any DeltaABC, sum (b - c) cot A/2 =

In a triangle ABC if cot(A/2)cot(B/2)=c, cot(B/2)cot(C/2)=a and cot(C/2)cot(A/2)=b then 1/(s-a)+1/(s-b)+1/(s-c)=

if ABC is a triangle and tan(A/2), tan(B/2), tan(C/2) are in H.P. Then find the minimum value of cot(A/2)*cot(C/2)

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE-I
  1. In Delta ABC if (a+b+c) ( a-b+c)= 3ac, Then find angle B

    Text Solution

    |

  2. The perimeter of atriangle ABC is 6 times the arihmetic mean of the si...

    Text Solution

    |

  3. If in A B C ,A C is double of A B , then the value of cot(A/2).cot((B...

    Text Solution

    |

  4. In Delta ABC a =5 ,b=3 ,c=7 .Then value of 3 cos C +7 cos B is equal :...

    Text Solution

    |

  5. In triangle ABC, of r(1)= 2r(2)=3r(3) Then a:b is equal :-

    Text Solution

    |

  6. In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P., then

    Text Solution

    |

  7. In Delta ABC of a :b:c= 7 : 8: 9 .Then cos A : cos B is equal to :-

    Text Solution

    |

  8. The ratio of the area of a regular polygon of n sides inscribed in a c...

    Text Solution

    |

  9. In Delta ABC angle A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

    Text Solution

    |

  10. In a triangle ABC a= 4 , b= 3 , angle A =60 ^@ ,Then c is root of equ...

    Text Solution

    |

  11. In a right - angled isosceles triangle , the ratio of the circumradius...

    Text Solution

    |

  12. The exradii of a triangle r(1),r(2),r(3) are in HP , then the sides a,...

    Text Solution

    |

  13. Given b=2 , c= sqrt(3), angle A= 30^@ then inradius of Delta ABC is :-

    Text Solution

    |

  14. In a triagnle ABC, angle B=pi/3 " and " angle C = pi/4 let D divide ...

    Text Solution

    |

  15. If sin theta and - cos theta are the roots of the equation ax^2-bx-...

    Text Solution

    |

  16. If A=75^0,b=45^0, then prove that b+csqrt(2)=2a

    Text Solution

    |

  17. In equilateral triangle , ratio of inradius ,circum radii and exadii i...

    Text Solution

    |

  18. Value of 1/(r(1)^2)'+ 1/(r(2)^2)+ 1/(r(3)^2)+ 1/(r()^2) is :

    Text Solution

    |

  19. If in a triangle ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area...

    Text Solution

    |

  20. If in a triangle ABC, 2 (cos A)/(a)+(cos B)/(b)+2(cos C)/(c)=(a)/(bc)+...

    Text Solution

    |