Home
Class 11
MATHS
Given b=2 , c= sqrt(3), angle A= 30^@ th...

Given b=2 ,` c= sqrt(3), angle A= 30^@` then inradius of `Delta ABC` is :-

A

`(sqrt(3)-1)/(2)`

B

`(sqrt(3)+1)/(2)`

C

`(sqrt(3)-1)/(4)`

D

Non of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inradius of triangle ABC given \( b = 2 \), \( c = \sqrt{3} \), and \( \angle A = 30^\circ \), we will follow these steps: ### Step 1: Calculate the Area (Δ) of Triangle ABC The area of a triangle can be calculated using the formula: \[ \Delta = \frac{1}{2} \times b \times c \times \sin A \] Substituting the values: \[ \Delta = \frac{1}{2} \times 2 \times \sqrt{3} \times \sin(30^\circ) \] Since \( \sin(30^\circ) = \frac{1}{2} \): \[ \Delta = \frac{1}{2} \times 2 \times \sqrt{3} \times \frac{1}{2} = \frac{\sqrt{3}}{2} \] ### Step 2: Use the Cosine Rule to Find Side a Using the cosine rule: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Substituting the known values: \[ \cos(30^\circ) = \frac{2^2 + (\sqrt{3})^2 - a^2}{2 \times 2 \times \sqrt{3}} \] Calculating \( \cos(30^\circ) = \frac{\sqrt{3}}{2} \): \[ \frac{\sqrt{3}}{2} = \frac{4 + 3 - a^2}{4\sqrt{3}} \] Cross-multiplying gives: \[ 2\sqrt{3} \cdot \sqrt{3} = 7 - a^2 \] This simplifies to: \[ 6 = 7 - a^2 \implies a^2 = 1 \implies a = 1 \] ### Step 3: Calculate the Semi-Perimeter (s) The semi-perimeter \( s \) is given by: \[ s = \frac{a + b + c}{2} \] Substituting the values: \[ s = \frac{1 + 2 + \sqrt{3}}{2} = \frac{3 + \sqrt{3}}{2} \] ### Step 4: Calculate the Inradius (r) The inradius \( r \) is given by: \[ r = \frac{\Delta}{s} \] Substituting the values of \( \Delta \) and \( s \): \[ r = \frac{\frac{\sqrt{3}}{2}}{\frac{3 + \sqrt{3}}{2}} = \frac{\sqrt{3}}{3 + \sqrt{3}} \] To rationalize the denominator, multiply the numerator and denominator by \( 3 - \sqrt{3} \): \[ r = \frac{\sqrt{3}(3 - \sqrt{3})}{(3 + \sqrt{3})(3 - \sqrt{3})} = \frac{3\sqrt{3} - 3}{9 - 3} = \frac{3\sqrt{3} - 3}{6} \] This simplifies to: \[ r = \frac{\sqrt{3} - 1}{2} \] ### Final Answer Thus, the inradius \( r \) of triangle ABC is: \[ r = \frac{\sqrt{3} - 1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-1)|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Illustration|28 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Given b = 2, c = sqrt3, angle A = 30^(@) , then inradius of DeltaABC is

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

In a Delta ABC b= sqrt(3)+1, c=sqrt(3)-1 , angle A = 60 ^@ then the value of tan (B-C)/(2) is :-

Let the area of triangle ABC be (sqrt3 -1)//2, b = 2 and c = (sqrt3 -1), and angleA be acute. The measure of the angle C is

In a triangle ABC a= 4 , b= 3 , angle A =60 ^@ ,Then c is root of equation :-

In a triangle ABC,a/b=2+sqrt(3) and /_C=60^(@) then angle A and B is

With the usual notation , in Delta ABC if angle A+ angle B= 120^@ ,a=sqrt(3)+1 " and " b= sqrt(3)-1 then the ratio angle A : angle B is :

In a triangles ABC , angle A = x^(@) , angle B = (3x - 2) ^(@) and angle C = y^(@) , " Also " ,angle C - angle B = 9^(@) Find all the three angles of the Delta ABC .

If the two sides of a triangle of a triangle and the included angle are given by a= sqrt(3)+1, b = 2 and C = 60^(@) , find the other two angles and the third side.

In a Delta ABC with vertices A(1,2), B(2,3) and C(3, 1) and angle A = angle B = cos^(-1)((1)/(sqrt(10))), angle C = cos^(-1)((4)/(5)) , then find the circumentre of Delta ABC .

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE-I
  1. In Delta ABC if (a+b+c) ( a-b+c)= 3ac, Then find angle B

    Text Solution

    |

  2. The perimeter of atriangle ABC is 6 times the arihmetic mean of the si...

    Text Solution

    |

  3. If in A B C ,A C is double of A B , then the value of cot(A/2).cot((B...

    Text Solution

    |

  4. In Delta ABC a =5 ,b=3 ,c=7 .Then value of 3 cos C +7 cos B is equal :...

    Text Solution

    |

  5. In triangle ABC, of r(1)= 2r(2)=3r(3) Then a:b is equal :-

    Text Solution

    |

  6. In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P., then

    Text Solution

    |

  7. In Delta ABC of a :b:c= 7 : 8: 9 .Then cos A : cos B is equal to :-

    Text Solution

    |

  8. The ratio of the area of a regular polygon of n sides inscribed in a c...

    Text Solution

    |

  9. In Delta ABC angle A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

    Text Solution

    |

  10. In a triangle ABC a= 4 , b= 3 , angle A =60 ^@ ,Then c is root of equ...

    Text Solution

    |

  11. In a right - angled isosceles triangle , the ratio of the circumradius...

    Text Solution

    |

  12. The exradii of a triangle r(1),r(2),r(3) are in HP , then the sides a,...

    Text Solution

    |

  13. Given b=2 , c= sqrt(3), angle A= 30^@ then inradius of Delta ABC is :-

    Text Solution

    |

  14. In a triagnle ABC, angle B=pi/3 " and " angle C = pi/4 let D divide ...

    Text Solution

    |

  15. If sin theta and - cos theta are the roots of the equation ax^2-bx-...

    Text Solution

    |

  16. If A=75^0,b=45^0, then prove that b+csqrt(2)=2a

    Text Solution

    |

  17. In equilateral triangle , ratio of inradius ,circum radii and exadii i...

    Text Solution

    |

  18. Value of 1/(r(1)^2)'+ 1/(r(2)^2)+ 1/(r(3)^2)+ 1/(r()^2) is :

    Text Solution

    |

  19. If in a triangle ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area...

    Text Solution

    |

  20. If in a triangle ABC, 2 (cos A)/(a)+(cos B)/(b)+2(cos C)/(c)=(a)/(bc)+...

    Text Solution

    |