Home
Class 11
MATHS
In a triagnle ABC, angle B=pi/3 " and ...

In a triagnle ABC, `angle B=pi/3 " and " angle C = pi/4` let D divide BC internally in the ratio 1:3 .Then `(sin (angle BAD))/((Sin (angle CAD))` is equal to

A

`1/sqrt(6)`

B

`1/3`

C

`1/sqrt(3)`

D

`sqrt(2/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of \( \frac{\sin(\angle BAD)}{\sin(\angle CAD)} \) in triangle ABC, where \( \angle B = \frac{\pi}{3} \) and \( \angle C = \frac{\pi}{4} \). Point D divides side BC in the ratio 1:3. ### Step-by-step Solution: 1. **Identify Angles**: - Given \( \angle B = \frac{\pi}{3} = 60^\circ \) - Given \( \angle C = \frac{\pi}{4} = 45^\circ \) - To find \( \angle A \): \[ \angle A = \pi - \angle B - \angle C = \pi - \frac{\pi}{3} - \frac{\pi}{4} \] To calculate this, we need a common denominator: \[ \angle A = \pi - \frac{4\pi}{12} - \frac{3\pi}{12} = \pi - \frac{7\pi}{12} = \frac{5\pi}{12} \] 2. **Set Up the Ratio**: - Let \( D \) divide \( BC \) internally in the ratio \( 1:3 \). This means if \( BD = x \) and \( DC = 3x \), then \( BC = BD + DC = x + 3x = 4x \). 3. **Apply the Sine Rule in Triangle ABD**: - According to the sine rule: \[ \frac{\sin(\angle BAD)}{BD} = \frac{\sin(\angle ABD)}{AD} \] - Here, \( \angle ABD = \angle B = 60^\circ \): \[ \frac{\sin(\angle BAD)}{x} = \frac{\sin(60^\circ)}{AD} \] - Therefore, \[ \sin(\angle BAD) = \frac{\sqrt{3}}{2} \cdot \frac{x}{AD} \quad \text{(Equation 1)} \] 4. **Apply the Sine Rule in Triangle ADC**: - Again using the sine rule: \[ \frac{\sin(\angle CAD)}{DC} = \frac{\sin(\angle ACD)}{AD} \] - Here, \( \angle ACD = \angle C = 45^\circ \): \[ \frac{\sin(\angle CAD)}{3x} = \frac{\sin(45^\circ)}{AD} \] - Therefore, \[ \sin(\angle CAD) = \frac{1}{\sqrt{2}} \cdot \frac{3x}{AD} \quad \text{(Equation 2)} \] 5. **Find the Ratio**: - Now, we need to find \( \frac{\sin(\angle BAD)}{\sin(\angle CAD)} \): \[ \frac{\sin(\angle BAD)}{\sin(\angle CAD)} = \frac{\frac{\sqrt{3}}{2} \cdot \frac{x}{AD}}{\frac{1}{\sqrt{2}} \cdot \frac{3x}{AD}} \] - The \( AD \) and \( x \) cancel out: \[ = \frac{\frac{\sqrt{3}}{2}}{\frac{3}{\sqrt{2}}} \] - Simplifying this gives: \[ = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{3} = \frac{\sqrt{6}}{6} \] ### Final Answer: \[ \frac{\sin(\angle BAD)}{\sin(\angle CAD)} = \frac{1}{\sqrt{6}} \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-1)|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Illustration|28 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC, angleB=(pi)/(3) and angleC=(pi)/(4) let D divide BC internally in the ratio 1:3 , then (sin(angleBAD))/(sin(angleCAD)) is equal to :

In triangle A B C ,/_B=pi/3,a n d/_C=pi/4dot Let D divided B C internally in the ratio 1: 3. Then (sin/_B A D)/(sin/_C A D) equals (a) 1/(sqrt(6)) (b) 1/3 (c) 1/(sqrt(3)) (d) sqrt(2/3)

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a tringle ABC, sin A-cosB=cosC, then angle B, is

In Delta ABC, angle B=(pi)/(4),angle C=(pi)/(6) . D is a point on BC which divides it in the ratio 1 : 3, angle DAB=beta , then

In triangles ABC, the measures of angles a, b, and c, respectively, are in the ratio 2:3:4.What is the measure of angle b?

In a triangle ABC, angle A = 60^(@) and b : c = (sqrt3 + 1) : 2 , then find the value of (angle B - angle C)

In Delta ABC angle A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C , then the angle A is

If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C , then the angle A is

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE-I
  1. In Delta ABC if (a+b+c) ( a-b+c)= 3ac, Then find angle B

    Text Solution

    |

  2. The perimeter of atriangle ABC is 6 times the arihmetic mean of the si...

    Text Solution

    |

  3. If in A B C ,A C is double of A B , then the value of cot(A/2).cot((B...

    Text Solution

    |

  4. In Delta ABC a =5 ,b=3 ,c=7 .Then value of 3 cos C +7 cos B is equal :...

    Text Solution

    |

  5. In triangle ABC, of r(1)= 2r(2)=3r(3) Then a:b is equal :-

    Text Solution

    |

  6. In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P., then

    Text Solution

    |

  7. In Delta ABC of a :b:c= 7 : 8: 9 .Then cos A : cos B is equal to :-

    Text Solution

    |

  8. The ratio of the area of a regular polygon of n sides inscribed in a c...

    Text Solution

    |

  9. In Delta ABC angle A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

    Text Solution

    |

  10. In a triangle ABC a= 4 , b= 3 , angle A =60 ^@ ,Then c is root of equ...

    Text Solution

    |

  11. In a right - angled isosceles triangle , the ratio of the circumradius...

    Text Solution

    |

  12. The exradii of a triangle r(1),r(2),r(3) are in HP , then the sides a,...

    Text Solution

    |

  13. Given b=2 , c= sqrt(3), angle A= 30^@ then inradius of Delta ABC is :-

    Text Solution

    |

  14. In a triagnle ABC, angle B=pi/3 " and " angle C = pi/4 let D divide ...

    Text Solution

    |

  15. If sin theta and - cos theta are the roots of the equation ax^2-bx-...

    Text Solution

    |

  16. If A=75^0,b=45^0, then prove that b+csqrt(2)=2a

    Text Solution

    |

  17. In equilateral triangle , ratio of inradius ,circum radii and exadii i...

    Text Solution

    |

  18. Value of 1/(r(1)^2)'+ 1/(r(2)^2)+ 1/(r(3)^2)+ 1/(r()^2) is :

    Text Solution

    |

  19. If in a triangle ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area...

    Text Solution

    |

  20. If in a triangle ABC, 2 (cos A)/(a)+(cos B)/(b)+2(cos C)/(c)=(a)/(bc)+...

    Text Solution

    |