Home
Class 11
MATHS
If in a triangle ABC, 2 (cos A)/(a)+(cos...

If in a triangle ABC, `2 (cos A)/(a)`+`(cos B)/(b)`+2`(cos C)/(c)`=`(a)/(bc)`+`b/(ca)` then the value of the angle A is

A

`pi/3`

B

`pi/4`

C

`pi/2`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and apply the cosine rule to find the value of angle A in triangle ABC. ### Step-by-Step Solution: 1. **Write the Given Equation:** \[ 2 \frac{\cos A}{a} + \frac{\cos B}{b} + 2 \frac{\cos C}{c} = \frac{a}{bc} + \frac{b}{ca} \] 2. **Apply the Cosine Rule:** Using the cosine rule, we have: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc}, \quad \cos B = \frac{c^2 + a^2 - b^2}{2ac}, \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] 3. **Substitute Cosine Values into the Equation:** Substitute the values of \(\cos A\), \(\cos B\), and \(\cos C\) into the equation: \[ 2 \frac{\frac{b^2 + c^2 - a^2}{2bc}}{a} + \frac{\frac{c^2 + a^2 - b^2}{2ac}}{b} + 2 \frac{\frac{a^2 + b^2 - c^2}{2ab}}{c} = \frac{a}{bc} + \frac{b}{ca} \] 4. **Simplify the Left Side:** The left side simplifies to: \[ \frac{b^2 + c^2 - a^2}{ab} + \frac{c^2 + a^2 - b^2}{2bc} + \frac{a^2 + b^2 - c^2}{ab} \] Combine the fractions: \[ \frac{2(b^2 + c^2 - a^2) + c^2 + a^2 - b^2 + 2(a^2 + b^2 - c^2)}{2abc} \] This simplifies to: \[ \frac{4b^2 + 2c^2 + 2a^2 - 2a^2 - 2c^2}{2abc} = \frac{4b^2}{2abc} = \frac{2b^2}{abc} \] 5. **Set the Left Side Equal to the Right Side:** Now, we equate this to the right side: \[ \frac{2b^2}{abc} = \frac{a}{bc} + \frac{b}{ca} \] 6. **Cross-Multiply to Eliminate Fractions:** Cross-multiply to eliminate the denominators: \[ 2b^2 \cdot (ca + ab) = a^2c + b^2c \] 7. **Rearranging the Equation:** Rearranging gives: \[ 2b^2ca + 2b^3 = a^2c + b^2c \] 8. **Simplify Further:** This simplifies to: \[ 2b^2ca + 2b^3 - a^2c - b^2c = 0 \] 9. **Recognize the Pythagorean Identity:** From the equation \(b^2 + c^2 = a^2\), we conclude that triangle ABC is a right triangle at angle A. 10. **Conclusion:** Therefore, the value of angle A is: \[ A = 90^\circ \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-1)|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise Illustration|28 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is

In a triangle ABC, a (b cos C - c cos B) =

If, in a /_\ ABC , (2 cos A)/a + (cos B)/(b) + (2 cos C)/(c) = a/(bc) + b/(ca) , then: /_A = .....

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

In a triangle ABC, cos A+cos B+cos C=

If in a triangle ABC, (1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(c) = (k^(2) (1 + cos A) (1 + cos B) (1 + cos C))/(abc) , then k is equal to

In any Delta A B C , prove that: (cos A)/a+(cos B)/b+(cos C)/c=(a^2+b^2+c^2)/(2a b c)

In any triangle ABC, show that : 2a cos (B/2) cos (C/2) = (a+b+c) sin (A/2)

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE-I
  1. In Delta ABC if (a+b+c) ( a-b+c)= 3ac, Then find angle B

    Text Solution

    |

  2. The perimeter of atriangle ABC is 6 times the arihmetic mean of the si...

    Text Solution

    |

  3. If in A B C ,A C is double of A B , then the value of cot(A/2).cot((B...

    Text Solution

    |

  4. In Delta ABC a =5 ,b=3 ,c=7 .Then value of 3 cos C +7 cos B is equal :...

    Text Solution

    |

  5. In triangle ABC, of r(1)= 2r(2)=3r(3) Then a:b is equal :-

    Text Solution

    |

  6. In any Delta ABC , cot(A/2),cot(B/2),cot(C/2) are in A.P., then

    Text Solution

    |

  7. In Delta ABC of a :b:c= 7 : 8: 9 .Then cos A : cos B is equal to :-

    Text Solution

    |

  8. The ratio of the area of a regular polygon of n sides inscribed in a c...

    Text Solution

    |

  9. In Delta ABC angle A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

    Text Solution

    |

  10. In a triangle ABC a= 4 , b= 3 , angle A =60 ^@ ,Then c is root of equ...

    Text Solution

    |

  11. In a right - angled isosceles triangle , the ratio of the circumradius...

    Text Solution

    |

  12. The exradii of a triangle r(1),r(2),r(3) are in HP , then the sides a,...

    Text Solution

    |

  13. Given b=2 , c= sqrt(3), angle A= 30^@ then inradius of Delta ABC is :-

    Text Solution

    |

  14. In a triagnle ABC, angle B=pi/3 " and " angle C = pi/4 let D divide ...

    Text Solution

    |

  15. If sin theta and - cos theta are the roots of the equation ax^2-bx-...

    Text Solution

    |

  16. If A=75^0,b=45^0, then prove that b+csqrt(2)=2a

    Text Solution

    |

  17. In equilateral triangle , ratio of inradius ,circum radii and exadii i...

    Text Solution

    |

  18. Value of 1/(r(1)^2)'+ 1/(r(2)^2)+ 1/(r(3)^2)+ 1/(r()^2) is :

    Text Solution

    |

  19. If in a triangle ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area...

    Text Solution

    |

  20. If in a triangle ABC, 2 (cos A)/(a)+(cos B)/(b)+2(cos C)/(c)=(a)/(bc)+...

    Text Solution

    |