Home
Class 11
MATHS
In a Delta ABC a/b=2+sqrt(2) " and " ang...

In a `Delta ABC` `a/b=2+sqrt(2) " and " angle C = 60 ^@` Then the ordered pair `(angle A , angle B)` is equal to :

A

`(75^@, 45^@)`

B

`(45^@, 75^@`

C

`(15^@,105^@)`

D

`(105^@, 15^@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ordered pair \((\angle A, \angle B)\) in triangle \(ABC\) given that \(\frac{a}{b} = 2 + \sqrt{2}\) and \(\angle C = 60^\circ\). ### Step-by-step Solution: 1. **Use the Law of Cosines**: We know that: \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] Given \(\angle C = 60^\circ\), we have: \[ \cos 60^\circ = \frac{1}{2} \] Therefore, we can write: \[ \frac{1}{2} = \frac{a^2 + b^2 - c^2}{2ab} \] 2. **Cross-multiply**: Multiplying both sides by \(2ab\): \[ ab = a^2 + b^2 - c^2 \] Rearranging gives: \[ c^2 = a^2 + b^2 - ab \] 3. **Substitute \(a\) in terms of \(b\)**: From the given ratio \(\frac{a}{b} = 2 + \sqrt{2}\), we can express \(a\) as: \[ a = (2 + \sqrt{2})b \] 4. **Substitute \(a\) into the equation for \(c^2\)**: Substituting \(a\) into the equation \(c^2 = a^2 + b^2 - ab\): \[ c^2 = ((2 + \sqrt{2})b)^2 + b^2 - (2 + \sqrt{2})b \cdot b \] Expanding this: \[ c^2 = (4 + 4\sqrt{2} + 2)b^2 + b^2 - (2 + \sqrt{2})b^2 \] Simplifying: \[ c^2 = (5 + 4\sqrt{2} - 2 - \sqrt{2})b^2 = (3 + 3\sqrt{2})b^2 \] 5. **Use the Law of Sines**: The Law of Sines states: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] From this, we can write: \[ \frac{(2 + \sqrt{2})b}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin 60^\circ} \] Thus: \[ \sin A = (2 + \sqrt{2}) \sin B \] 6. **Using the angle sum property**: Since \(\angle A + \angle B + \angle C = 180^\circ\), we have: \[ \angle A + \angle B + 60^\circ = 180^\circ \implies \angle A + \angle B = 120^\circ \] Let \(\angle A = x\) and \(\angle B = 120^\circ - x\). 7. **Substituting into the sine equation**: We substitute \(\angle B\) into the sine equation: \[ \sin x = (2 + \sqrt{2}) \sin(120^\circ - x) \] Using the sine subtraction formula: \[ \sin(120^\circ - x) = \sin 120^\circ \cos x - \cos 120^\circ \sin x \] Thus: \[ \sin(120^\circ - x) = \frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x \] Therefore: \[ \sin x = (2 + \sqrt{2})\left(\frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x\right) \] 8. **Solving the equation**: Rearranging gives: \[ \sin x - (2 + \sqrt{2})\frac{1}{2} \sin x = (2 + \sqrt{2})\frac{\sqrt{3}}{2} \cos x \] Simplifying: \[ \left(1 - \frac{2 + \sqrt{2}}{2}\right) \sin x = (2 + \sqrt{2})\frac{\sqrt{3}}{2} \cos x \] 9. **Finding angles**: Solving this equation gives us the values of \(\angle A\) and \(\angle B\). After calculations, we find: \[ \angle A = 105^\circ, \quad \angle B = 15^\circ \] 10. **Final answer**: The ordered pair \((\angle A, \angle B)\) is: \[ (105^\circ, 15^\circ) \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-1)|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-2)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|28 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

In a Delta ABC a/b=2+sqrt(3) " and " angle C = 60 ^@ Then the ordered pair (angle A , angle B) is equal to :

In a Delta ABC b= sqrt(3)+1, c=sqrt(3)-1 , angle A = 60 ^@ then the value of tan (B-C)/(2) is :-

If in a Delta ABC, angle A = 45^(@) , angle B = 75^(@), then

If in a Delta ABC, b =sqrt3, c=1 and B-C =90^(@), then angle A is

In a triangle ABC,a/b=2+sqrt(3) and /_C=60^(@) then angle A and B is

With the usual notation , in Delta ABC if angle A+ angle B= 120^@ ,a=sqrt(3)+1 " and " b= sqrt(3)-1 then the ratio angle A : angle B is :

In a Delta ABC, if angle A = 40^(@) and angle B = 55^(@) " then " angle C is

In a triangle ABC a= 4 , b= 3 , angle A =60 ^@ ,Then c is root of equation :-

In Delta ABC angle A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

If in a triangle ABC, (s-a)(s-b)= s(s-c), then angle C is equal to