Home
Class 11
MATHS
With the usual notation , in Delta ABC ...

With the usual notation , in `Delta ABC` if `angle A+ angle B= 120^@` ,a=sqrt(3)+1 " and " b= sqrt(3)-1` then the ratio `angle A : angle B ` is :

A

`7:1`

B

`5:3`

C

`9:7`

D

`3:1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the information provided and apply the properties of triangles and trigonometric identities. ### Step 1: Understand the given information We have a triangle ABC where: - \( \angle A + \angle B = 120^\circ \) - Side \( a = \sqrt{3} + 1 \) - Side \( b = \sqrt{3} - 1 \) ### Step 2: Find angle C Using the property that the sum of angles in a triangle is \( 180^\circ \): \[ \angle C = 180^\circ - (\angle A + \angle B) = 180^\circ - 120^\circ = 60^\circ \] ### Step 3: Use the tangent half-angle formula We can apply the tangent half-angle formula: \[ \tan\left(\frac{\angle A - \angle B}{2}\right) = \frac{a - b}{a + b} \cdot \cot\left(\frac{\angle C}{2}\right) \] ### Step 4: Calculate \( a - b \) and \( a + b \) Substituting the values of \( a \) and \( b \): \[ a - b = (\sqrt{3} + 1) - (\sqrt{3} - 1) = 2 \] \[ a + b = (\sqrt{3} + 1) + (\sqrt{3} - 1) = 2\sqrt{3} \] ### Step 5: Calculate \( \cot\left(\frac{\angle C}{2}\right) \) Since \( \angle C = 60^\circ \): \[ \frac{\angle C}{2} = 30^\circ \quad \text{and} \quad \cot(30^\circ) = \sqrt{3} \] ### Step 6: Substitute into the tangent formula Now substituting into the formula: \[ \tan\left(\frac{\angle A - \angle B}{2}\right) = \frac{2}{2\sqrt{3}} \cdot \sqrt{3} = 1 \] ### Step 7: Solve for \( \angle A - \angle B \) Since \( \tan\left(\frac{\angle A - \angle B}{2}\right) = 1 \): \[ \frac{\angle A - \angle B}{2} = 45^\circ \quad \Rightarrow \quad \angle A - \angle B = 90^\circ \] ### Step 8: Set up the equations Now we have two equations: 1. \( \angle A + \angle B = 120^\circ \) 2. \( \angle A - \angle B = 90^\circ \) ### Step 9: Solve the equations Adding the two equations: \[ (\angle A + \angle B) + (\angle A - \angle B) = 120^\circ + 90^\circ \] \[ 2\angle A = 210^\circ \quad \Rightarrow \quad \angle A = 105^\circ \] Now substituting back to find \( \angle B \): \[ \angle B = 120^\circ - \angle A = 120^\circ - 105^\circ = 15^\circ \] ### Step 10: Find the ratio \( \angle A : \angle B \) Now we can find the ratio: \[ \angle A : \angle B = 105^\circ : 15^\circ = 7 : 1 \] Thus, the final answer is: \[ \text{The ratio } \angle A : \angle B = 7 : 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-1)|11 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-2)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-I|28 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

With the usual notation in DeltaABC if angleA+angle B=120^(@),a=sqrt(3)+1 and b=sqrt(3)-1 then the ratio angle A:angleB is

In a Delta ABC,\ angleA+angle B = 120^@, a=sqrt3+1, b=sqrt3-1 , then the ratio of angleA to angleB is (a) 7:1 (b) 5:1 (c) 3:1 (d) 5:3

If tan(A+B)=sqrt(3) and sqrt(3)tan(A-B)=1 , find the angles A and B.

In a Delta ABC, if angle A = 40^(@) and angle B = 55^(@) " then " angle C is

In a triangle ABC, angle A = 60^(@) and b : c = (sqrt3 + 1) : 2 , then find the value of (angle B - angle C)

In a Delta ABC a/b=2+sqrt(3) " and " angle C = 60 ^@ Then the ordered pair (angle A , angle B) is equal to :

In Delta ABC angle A = (pi)/(6) & b:c= 2: sqrt(3) "then " angle B is

If in a Delta ABC, angle A = 45^(@) , angle B = 75^(@), then

In a Delta ABC a/b=2+sqrt(2) " and " angle C = 60 ^@ Then the ordered pair (angle A , angle B) is equal to :

In a right triangle ABC, right angled at C, if a = 7 cm and b = 7 sqrt(3) cm, then angleA =