Home
Class 11
MATHS
"If" n in "and if "(1+ 4x +4 x^2)^n=unde...

`"If" n in "and if "(1+ 4x +4 x^2)^n=underset(r=0)overset(2n)Sigma a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" `
The value of ` 2 ` underset(r=0) overset (n) Sigma_(2r) ` is

A

`9^n-1`

B

`9 ^n+1`

C

`9^n-2`

D

`9^n +2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and derive the required summation. Here’s a step-by-step breakdown of the solution: ### Step 1: Rewrite the Expression We start with the expression given: \[ (1 + 4x + 4x^2)^n = \sum_{r=0}^{2n} a_r x^r \] We can rewrite the left-hand side: \[ 1 + 4x + 4x^2 = (1 + 2x)^2 \] Thus, we have: \[ (1 + 2x)^2^n = (1 + 2x)^{2n} \] ### Step 2: Expand Using Binomial Theorem Using the Binomial Theorem, we can expand \((1 + 2x)^{2n}\): \[ (1 + 2x)^{2n} = \sum_{k=0}^{2n} \binom{2n}{k} (2x)^k = \sum_{k=0}^{2n} \binom{2n}{k} 2^k x^k \] This means: \[ a_k = \binom{2n}{k} 2^k \] ### Step 3: Calculate the Required Summation We need to find: \[ 2 \sum_{r=1}^{n} a_{2r-1} \] This means we need to evaluate the coefficients \(a_{2r-1}\) for \(r = 1\) to \(n\). ### Step 4: Identify Odd Coefficients The odd coefficients in the expansion correspond to \(k = 1, 3, 5, \ldots, 2n-1\). Therefore, we can express the summation as: \[ \sum_{r=1}^{n} a_{2r-1} = \sum_{k=1, k \text{ odd}}^{2n} \binom{2n}{k} 2^k \] ### Step 5: Use the Binomial Identity We can use the identity for the sum of odd indexed binomial coefficients: \[ \sum_{k \text{ odd}}^{m} \binom{m}{k} = 2^{m-1} \] Thus, we have: \[ \sum_{k \text{ odd}}^{2n} \binom{2n}{k} = 2^{2n-1} \] So: \[ \sum_{k \text{ odd}}^{2n} \binom{2n}{k} 2^k = 2 \cdot 2^{2n-1} = 2^{2n} \] ### Step 6: Final Calculation Now, substituting back into our expression: \[ 2 \sum_{r=1}^{n} a_{2r-1} = 2 \cdot 2^{2n} = 2^{2n + 1} \] ### Step 7: Relate to the Original Expression From the original equation, we also know: \[ (1 + 2x)^{2n} \text{ evaluated at } x = 1 \text{ gives } 3^{2n} = 9^n \] Thus, we conclude: \[ 2 \sum_{r=1}^{n} a_{2r-1} = 9^n - 1 \] ### Final Answer The value of \(2 \sum_{r=1}^{n} a_{2r-1}\) is: \[ 9^n - 1 \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-2)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-1)|16 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of the 2 underset(r=1) overset (n) Sigma_(2r-1) is

"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of a_(2n-1)is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1+x+x^(2)) ^(n) = sum _(r=0)^(2n) a_(r) x^(r) , "where " a_(0),a_(1), a_(2),…a_(2n) are real numbers and n is a positive integer. The value of a_(2) is

Equation x^(n)-1=0,ngt1,ninN, has roots 1,a_(1),a_(2),...,a_(n),. The value of underset(r=2)overset(n)sum(1)/(2-a_(r)), is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

The sum, underset(n-1)overset(10)(Sigma)(n(2n+1)(2n-1))/5 is equal to.........

If (1+a)(1+a^(2))(1+a^(4)) . . . . (1+a^(128))=underset(r=0)overset(n)suma^(r ) , then n is equal to