Home
Class 11
MATHS
"If" n in "and if "(1+ 4x +4 x^2)^n=Sigm...

`"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" `
The value of the 2 ` underset(r=1) overset (n) Sigma_(2r-1) ` is

A

`9^n-1`

B

`9 ^n+1`

C

`9^n-2`

D

`9^n +2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-2)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-1)|16 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of a_(2n-1)is

"If" n in "and if "(1+ 4x +4 x^2)^n=underset(r=0)overset(2n)Sigma a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of 2 underset(r=0) overset (n) Sigma_(2r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1+x+x^(2)) ^(n) = sum _(r=0)^(2n) a_(r) x^(r) , "where " a_(0),a_(1), a_(2),…a_(2n) are real numbers and n is a positive integer. The value of a_(2) is

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

Equation x^(n)-1=0,ngt1,ninN, has roots 1,a_(1),a_(2),...,a_(n),. The value of underset(r=2)overset(n)sum(1)/(2-a_(r)), is

Let (1+x^2)^2 . (1+x)^n = Sigma_(k=0)^(n+4) (a_k).x ^k "if" a_1,a_2 & a_3 are in AP find n

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1