Home
Class 11
MATHS
"If" n in "and if "(1+ 4x +4 x^2)^n=Sigm...

`"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of a_(2n-1)is

A

`2^(2n)`

B

`n. 2^(2n)`

C

`(n-1)2^(2n)`

D

`(n+1)2^(2n)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a_{2n-1} \) in the expression \( (1 + 4x + 4x^2)^n = \sum_{r=0}^{2n} a_r x^r \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression \( 1 + 4x + 4x^2 \): \[ 1 + 4x + 4x^2 = 1 + (2x)^2 + 2(2x) \] This can be recognized as a perfect square: \[ = (1 + 2x)^2 \] ### Step 2: Raise to the power of \( n \) Now we raise this expression to the power of \( n \): \[ (1 + 4x + 4x^2)^n = ((1 + 2x)^2)^n = (1 + 2x)^{2n} \] ### Step 3: Apply the Binomial Theorem Using the Binomial Theorem, we expand \( (1 + 2x)^{2n} \): \[ (1 + 2x)^{2n} = \sum_{r=0}^{2n} \binom{2n}{r} (2x)^r = \sum_{r=0}^{2n} \binom{2n}{r} 2^r x^r \] ### Step 4: Identify the coefficient \( a_{2n-1} \) We need to find the coefficient of \( x^{2n-1} \), which corresponds to \( a_{2n-1} \): \[ a_{2n-1} = \binom{2n}{2n-1} 2^{2n-1} \] ### Step 5: Simplify the coefficient Now we simplify the expression for \( a_{2n-1} \): \[ \binom{2n}{2n-1} = \frac{2n!}{(2n-1)! \cdot 1!} = 2n \] Thus, \[ a_{2n-1} = 2n \cdot 2^{2n-1} \] ### Step 6: Final expression Putting it all together, we have: \[ a_{2n-1} = 2n \cdot 2^{2n-1} = n \cdot 2^{2n} \] ### Conclusion Therefore, the value of \( a_{2n-1} \) is: \[ \boxed{n \cdot 2^{2n-1}} \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-2)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-1)|16 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE-II|11 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of the 2 underset(r=1) overset (n) Sigma_(2r-1) is

"If" n in "and if "(1+ 4x +4 x^2)^n=underset(r=0)overset(2n)Sigma a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of 2 underset(r=0) overset (n) Sigma_(2r) is

Consider (1+x+x^(2)) ^(n) = sum _(r=0)^(2n) a_(r) x^(r) , "where " a_(0),a_(1), a_(2),…a_(2n) are real numbers and n is a positive integer. The value of a_(2) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

Let (1+x^2)^2 . (1+x)^n = Sigma_(k=0)^(n+4) (a_k).x ^k "if" a_1,a_2 & a_3 are in AP find n

If (1+x+x^2)^n=a_0+a_1x+a_2x^2+....+a_(2n)x^(2n) , then a_0+a_2+a_4+.....+a_(2n) is

If (1+x+x^2)^n = Sigma_(2n)^(r=0) a _(r)x^r then prove that (a) a_(r)= 20_(2n-r) (b) Sigma_(2n)^(r=0) a_(r) = 1/2 (3^n-a_(n))

If (3 + 7x - 9x^2)^n = a_0 +a_1x + a_2 x^2 + ……+a_(2n)x^(2n) prove the a_0 +a_1 +a_2 + ……+a_(2n) = 1