Home
Class 11
MATHS
underset(r=0)overset(n)(sum)(-1)^(r).^(n...

`underset(r=0)overset(n)(sum)(-1)^(r).^(n)C_(r)[(1)/(2^(r))+(3^(r))/(2^(2r))+(7^(r))/(2^(3r))+(15^(r))/(2^(4r))+ . . .m" terms"]=`

Text Solution

Verified by Experts

The correct Answer is:
`(2^(mn)-1)/((2^n-1)(2^(mn))`
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-2)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-M)|17 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-2)|6 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

Prove that overset(n)underset(r=0)(Sigma^(n))C_(r).4^(r)=5^(n)

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE (S-1)
  1. (2) If the coefficients of (2r + 4)th, (r - 2)th terms in the expansio...

    Text Solution

    |

  2. Find the term independent of x in the expansion of [1/2x^(1//3)+x^(-1...

    Text Solution

    |

  3. Prove that the ratio of the coefficient of x^(10) in the expansion of ...

    Text Solution

    |

  4. underset(r=0)overset(n)(sum)(-1)^(r).^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(...

    Text Solution

    |

  5. Find the numerically Greatest Term In the expansion of (3-5x)^15 when ...

    Text Solution

    |

  6. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  7. Let (1+x^2)^2 . (1+x)^n = Sigma(k=0)^(n+4) (ak).x ^k "if" a1,a2 & a3...

    Text Solution

    |

  8. Let f(x) = 1 - x +x^2-x^3+......+x^16+x^17 , then coefficient of x^2...

    Text Solution

    |

  9. Let N=""^(2000)C1+2 .""^(2000)C2+3 .""^(2000)C(3)+....+2000.""^(2000)C...

    Text Solution

    |

  10. Find the coefficient of x^2 y^3 z^4 in the expansion of (ax -by +cz...

    Text Solution

    |

  11. Find the coefficient of x^4 in the expansion of (1+x+x^2 +x^3 )^11

    Text Solution

    |

  12. The coefficient of x^r[0lt=rlt=(n-1)] in the expansion of (x+3)^(n-1)+...

    Text Solution

    |

  13. If (1+x+x^2)6n=a0+a1x+a2x^2+……….=a(2n)x^(2n) then (A) a0+a3+a6+….=3^(n...

    Text Solution

    |

  14. Prove the following identieties using the theory of permutation where ...

    Text Solution

    |

  15. If C(0),C(1),C(2)…….,C(n) are the combinatorial coefficient in the exp...

    Text Solution

    |

  16. Prove that C1/C0+(2c(2))/C1+(3C3)/(C2)+......+(n.Cn)/(C(n-1))=(n(n+1))...

    Text Solution

    |