Home
Class 11
MATHS
Let (1+x^2)^2 . (1+x)^n = Sigma(k=0)^(n+...

Let `(1+x^2)^2 . (1+x)^n = Sigma_(k=0)^(n+4) (a_k).x ^k "if" a_1,a_2 & a_3` are in AP find n

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and find the value of \( n \) such that \( a_1, a_2, a_3 \) are in Arithmetic Progression (AP). ### Step-by-Step Solution: 1. **Expand the Expression:** We start with the expression \((1 + x^2)^2 \cdot (1 + x)^n\). \[ (1 + x^2)^2 = 1 + 2x^2 + x^4 \] Therefore, the expression becomes: \[ (1 + 2x^2 + x^4)(1 + x)^n \] 2. **Distribute the Terms:** We will distribute \((1 + 2x^2 + x^4)\) with \((1 + x)^n\): \[ (1)(1 + x)^n + (2x^2)(1 + x)^n + (x^4)(1 + x)^n \] This gives us: \[ (1 + x)^n + 2x^2(1 + x)^n + x^4(1 + x)^n \] 3. **Identify Coefficients:** The coefficients \( a_k \) in the expansion can be identified as: - \( a_1 = \text{coefficient of } x^1 \) - \( a_2 = \text{coefficient of } x^2 \) - \( a_3 = \text{coefficient of } x^3 \) From the expansion: - \( a_1 = \binom{n}{1} = n \) - \( a_2 = \binom{n}{2} + 2 \) (from \( 2x^2 \)) - \( a_3 = \binom{n}{3} + 2\binom{n}{1} = \binom{n}{3} + 2n \) 4. **Set Up the AP Condition:** For \( a_1, a_2, a_3 \) to be in AP: \[ 2a_2 = a_1 + a_3 \] Substituting the values: \[ 2\left(\binom{n}{2} + 2\right) = n + \left(\binom{n}{3} + 2n\right) \] Simplifying gives: \[ 2\binom{n}{2} + 4 = 3n + \binom{n}{3} \] 5. **Substitute Binomial Coefficients:** Recall that: \[ \binom{n}{2} = \frac{n(n-1)}{2}, \quad \binom{n}{3} = \frac{n(n-1)(n-2)}{6} \] Substitute these into the equation: \[ 2\left(\frac{n(n-1)}{2}\right) + 4 = 3n + \frac{n(n-1)(n-2)}{6} \] This simplifies to: \[ n(n-1) + 4 = 3n + \frac{n(n-1)(n-2)}{6} \] 6. **Clear the Fraction:** Multiply through by 6 to eliminate the fraction: \[ 6n(n-1) + 24 = 18n + n(n-1)(n-2) \] 7. **Rearranging the Equation:** Rearranging gives: \[ n^3 - 9n^2 + 26n - 24 = 0 \] 8. **Finding Roots:** We can use the Rational Root Theorem or synthetic division to find the roots of the cubic equation. Testing \( n = 9 \): \[ 9^3 - 9(9^2) + 26(9) - 24 = 729 - 729 + 234 - 24 = 0 \] Thus, \( n = 9 \) is a root. ### Final Answer: The value of \( n \) is \( 9 \).
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-2)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-M)|17 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-2)|6 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let (1+x^2)^2(1+x)^n=sum_(k=0)^(n+4)a_k x^k . If a_1 , a_2 and a_3 are in arithmetic progression, then the possible value/values of n is/are a. 5 b. 4 c. 3 d. 2

Let (1 + x^2)^2 (1 + x)^n = A_0 +A_1 x+A_2 x^2 + ...... If A_0, A_1, A_2, are in A.P. then the value of n is

"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of the 2 underset(r=1) overset (n) Sigma_(2r-1) is

"If" n in "and if "(1+ 4x +4 x^2)^n=Sigma_(r=0)^(2n) a_rx^r, "where" a_0,a_1,a_2,.....a_(2n) "are real number" The value of a_(2n-1)is

Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P then Statement - I : a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are :

Let a_1,a_2,a_3…., a_49 be in A.P . Such that Sigma_(k=0)^(12) a_(4k+1)=416 and a_9+a_(43)=66 .If a_1^2+a_2^2 +…+ a_(17) = 140 m then m is equal to

If x,a_1,a_2,a_3,…..a_n epsilon R and (x-a_1+a_2)^2+(x-a_2+a_3)^2+…….+(x-a_(n-1)+a_n)^2le0 , then a_1,a_2,a_3………a_n are in (A) AP (B) GP (C) HP (D) none of these

Prove that Sigma_(K=0)^(n) ""^nC_(k) sin K x cos (n-K)x = 2^(n-1) sin x.

Let S_n=Sigma_(k=1)^(4n) (-1)^((k(k+1))/2)k^2 .Then S_n can take value (s)

Given that (1+x+x^2)^n=a_0+a_1x+a_2x^2+.....+a_(2n)x^(2n) find i) a_0 + a_1 +a_2 .. . . .+ a_(2n) ii) a_0 - a_1 + a_2 - a_3 . . . . + a_(2n) iii) (a_0)^2 - (a_1)^2 . . . . .+ (a_(2n))^2

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE (S-1)
  1. (2) If the coefficients of (2r + 4)th, (r - 2)th terms in the expansio...

    Text Solution

    |

  2. Find the term independent of x in the expansion of [1/2x^(1//3)+x^(-1...

    Text Solution

    |

  3. Prove that the ratio of the coefficient of x^(10) in the expansion of ...

    Text Solution

    |

  4. underset(r=0)overset(n)(sum)(-1)^(r).^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(...

    Text Solution

    |

  5. Find the numerically Greatest Term In the expansion of (3-5x)^15 when ...

    Text Solution

    |

  6. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  7. Let (1+x^2)^2 . (1+x)^n = Sigma(k=0)^(n+4) (ak).x ^k "if" a1,a2 & a3...

    Text Solution

    |

  8. Let f(x) = 1 - x +x^2-x^3+......+x^16+x^17 , then coefficient of x^2...

    Text Solution

    |

  9. Let N=""^(2000)C1+2 .""^(2000)C2+3 .""^(2000)C(3)+....+2000.""^(2000)C...

    Text Solution

    |

  10. Find the coefficient of x^2 y^3 z^4 in the expansion of (ax -by +cz...

    Text Solution

    |

  11. Find the coefficient of x^4 in the expansion of (1+x+x^2 +x^3 )^11

    Text Solution

    |

  12. The coefficient of x^r[0lt=rlt=(n-1)] in the expansion of (x+3)^(n-1)+...

    Text Solution

    |

  13. If (1+x+x^2)6n=a0+a1x+a2x^2+……….=a(2n)x^(2n) then (A) a0+a3+a6+….=3^(n...

    Text Solution

    |

  14. Prove the following identieties using the theory of permutation where ...

    Text Solution

    |

  15. If C(0),C(1),C(2)…….,C(n) are the combinatorial coefficient in the exp...

    Text Solution

    |

  16. Prove that C1/C0+(2c(2))/C1+(3C3)/(C2)+......+(n.Cn)/(C(n-1))=(n(n+1))...

    Text Solution

    |