Home
Class 11
MATHS
If C(0),C(1),C(2)…….,C(n) are the combin...

If `C_(0),C_(1),C_(2)…….,C_(n)` are the combinatorial coefficient in the expansion of `(1+x)^n, n, ne N`, then prove that following
`C_(1)+2C_(2)+3C_(3)+..+n.C_(n)=n.2^(n-1)`
`C_(0)+2C_(1)+3C_(2)+......+(n+1)C_(n)=(n+2)C_(n)=(n+2)2^(n-1)`
` C_(0),+3C_(1)+5C_(2)+.....+(2n+1)C_n =(n+1)2^n`
`(C_0+C_1)(C_1+C_2)(C_2+C_3)......(C_(n-1)+C_n)=(C_0.C_1.C_2....C_(n-1)(n+1)^n)/(n!)`
`1.C_0^2+3.C_1^2+....+ (2n+1)C_n^2=((n+1)(2n)!)/(n! n!)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-2)|6 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-M)|17 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (O-2)|6 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

If C_(0), C_(1), C_(2),...,C_(n) denote the binomial coefficients in the expansion of (1 + x)^n) , then xC_(0)-(x -1) C_(1)+(x-2)C_(2)-(x -3)C_(3)+...+(-1)^(n) (x -n) C_(n)=

If C_(0), C_(1), C_(2),..., C_(n) are binomial coefficients in the expansion of (1 + x)^(n), then the value of C_(0) + (C_(1))/(2) + (C_(2))/(3) + (C_(3))/(4) +...+ (C_(n))/(n+1) is

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then C_(0)""^(2) + 2 C_(1)""^(2) + 3C_(2)""^(2) + ...+ (n +1)C_(n)""^(2) =

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

If C_(0),C_(1), C_(2),...,C_(N) denote the binomial coefficients in the expansion of (1 + x)^(n) , then 1^(3). C_(1)-2^(3). C_(3) - 4^(3) . C_(4) + ...+ (-1)^(n-1)n^(3) C_(n)=

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)+2C_(1) +3C_(2)+. . . .+(n+1)C_(n) is equal to

If C_(0), C_(1), C_(2),..., C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then . 1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)= .

If C_(0),C_(1),C_(2),C_(3), . . .,C_(n) be binomial coefficients in the expansion of (1+x)^(n) , then Q. The value of the expression C_(0)-2C_(1)+3C_(2)-. . . .+(-1)^(n)(n+1)C_(n) is equal to

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

ALLEN-Solutions of Triangle & Binomial Theorem-EXERCISE (S-1)
  1. (2) If the coefficients of (2r + 4)th, (r - 2)th terms in the expansio...

    Text Solution

    |

  2. Find the term independent of x in the expansion of [1/2x^(1//3)+x^(-1...

    Text Solution

    |

  3. Prove that the ratio of the coefficient of x^(10) in the expansion of ...

    Text Solution

    |

  4. underset(r=0)overset(n)(sum)(-1)^(r).^(n)C(r)[(1)/(2^(r))+(3^(r))/(2^(...

    Text Solution

    |

  5. Find the numerically Greatest Term In the expansion of (3-5x)^15 when ...

    Text Solution

    |

  6. Find the term independent of x in the expansion of (1+x+2x^3)[(3x^2//2...

    Text Solution

    |

  7. Let (1+x^2)^2 . (1+x)^n = Sigma(k=0)^(n+4) (ak).x ^k "if" a1,a2 & a3...

    Text Solution

    |

  8. Let f(x) = 1 - x +x^2-x^3+......+x^16+x^17 , then coefficient of x^2...

    Text Solution

    |

  9. Let N=""^(2000)C1+2 .""^(2000)C2+3 .""^(2000)C(3)+....+2000.""^(2000)C...

    Text Solution

    |

  10. Find the coefficient of x^2 y^3 z^4 in the expansion of (ax -by +cz...

    Text Solution

    |

  11. Find the coefficient of x^4 in the expansion of (1+x+x^2 +x^3 )^11

    Text Solution

    |

  12. The coefficient of x^r[0lt=rlt=(n-1)] in the expansion of (x+3)^(n-1)+...

    Text Solution

    |

  13. If (1+x+x^2)6n=a0+a1x+a2x^2+……….=a(2n)x^(2n) then (A) a0+a3+a6+….=3^(n...

    Text Solution

    |

  14. Prove the following identieties using the theory of permutation where ...

    Text Solution

    |

  15. If C(0),C(1),C(2)…….,C(n) are the combinatorial coefficient in the exp...

    Text Solution

    |

  16. Prove that C1/C0+(2c(2))/C1+(3C3)/(C2)+......+(n.Cn)/(C(n-1))=(n(n+1))...

    Text Solution

    |