Home
Class 11
MATHS
Let aa n db be the coefficients of x^3 i...

Let `aa n db` be the coefficients of `x^3` in `(1+x+2x^2+3x^2)^4a n d(1+x+2x^2+3x^3+4x^4)^4,` then respectively. Then the value of `4a//b` is.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficients \( a \) and \( b \) of \( x^3 \) in the expressions \( (1+x+2x^2+3x^3)^4 \) and \( (1+x+2x^2+3x^3+4x^4)^4 \) respectively. Then, we will calculate the value of \( \frac{4a}{b} \). ### Step 1: Find the coefficient \( a \) in \( (1+x+2x^2+3x^3)^4 \) We can use the multinomial expansion to find the coefficient of \( x^3 \). The general term in the expansion of \( (1+x+2x^2+3x^3)^4 \) can be expressed as: \[ \frac{4!}{k_1! k_2! k_3! k_4!} \cdot 1^{k_1} \cdot x^{k_2} \cdot (2x^2)^{k_3} \cdot (3x^3)^{k_4} \] where \( k_1 + k_2 + k_3 + k_4 = 4 \) and \( k_2 + 2k_3 + 3k_4 = 3 \). ### Step 2: Find combinations of \( k_2, k_3, k_4 \) We will consider the possible values of \( k_4 \) (the number of \( 3x^3 \) terms): - **Case 1:** \( k_4 = 1 \) - Then \( k_2 + 2k_3 = 0 \) implies \( k_2 = 0, k_3 = 0 \). - Contribution: \( \frac{4!}{3!1!} \cdot 3^1 = 4 \cdot 3 = 12 \). - **Case 2:** \( k_4 = 0 \) - Then \( k_2 + 2k_3 = 3 \). - Possible combinations: - \( k_2 = 3, k_3 = 0 \): Contribution: \( \frac{4!}{1!3!0!} \cdot 2^0 = 4 \). - \( k_2 = 1, k_3 = 1 \): Contribution: \( \frac{4!}{2!1!1!} \cdot 2^1 = 12 \). - \( k_2 = 0, k_3 = 1 \): Contribution: \( \frac{4!}{1!0!2!} \cdot 2^2 = 12 \). Adding all contributions together for \( a \): \[ a = 12 + 4 + 12 + 12 = 40 \] ### Step 3: Find the coefficient \( b \) in \( (1+x+2x^2+3x^3+4x^4)^4 \) We will again use the multinomial expansion for this expression. The general term can be expressed similarly: \[ \frac{4!}{k_1! k_2! k_3! k_4! k_5!} \cdot 1^{k_1} \cdot x^{k_2} \cdot (2x^2)^{k_3} \cdot (3x^3)^{k_4} \cdot (4x^4)^{k_5} \] where \( k_1 + k_2 + k_3 + k_4 + k_5 = 4 \) and \( k_2 + 2k_3 + 3k_4 = 3 \). ### Step 4: Find combinations of \( k_2, k_3, k_4, k_5 \) - **Case 1:** \( k_4 = 1 \) - Then \( k_2 + 2k_3 + 0 = 0 \) implies \( k_2 = 0, k_3 = 0, k_5 = 3 \). - Contribution: \( \frac{4!}{3!1!} \cdot 3^1 = 12 \). - **Case 2:** \( k_4 = 0 \) - Then \( k_2 + 2k_3 = 3 \). - Possible combinations: - \( k_2 = 3, k_3 = 0 \): Contribution: \( \frac{4!}{1!3!0!} \cdot 2^0 = 4 \). - \( k_2 = 1, k_3 = 1 \): Contribution: \( \frac{4!}{2!1!1!} \cdot 2^1 = 12 \). - \( k_2 = 0, k_3 = 1 \): Contribution: \( \frac{4!}{1!0!2!1!} \cdot 2^2 = 12 \). - \( k_5 = 1 \): Contribution: \( \frac{4!}{1!0!2!1!} \cdot 4^1 = 24 \). Adding all contributions together for \( b \): \[ b = 12 + 4 + 12 + 12 + 24 = 64 \] ### Step 5: Calculate \( \frac{4a}{b} \) Now, we can find: \[ \frac{4a}{b} = \frac{4 \times 40}{64} = \frac{160}{64} = 2.5 \] ### Final Answer Thus, the value of \( \frac{4a}{b} \) is \( 2.5 \).
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-M)|17 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-A)|5 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-1)|16 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Let aa n db be the coefficients of x^3 in (1+x+2x^2+3x^3)^4a n d(1+x+2x^2+3x^3+4x^4)^4, then respectively. Then the value of 4a//b is.

The coefficient of x^4 in (1+x+x^2+x^3)^11 is

The coefficient of x^7 in (1 + 2x + 3x^2 + 4x^3 + …… "to " oo)

If n is odd, then Coefficient of x^n in (1+ (x^2)/(2!) +x^4/(4!) + ....oo)^2 =

If, |x|<1,Find the coefficient of x^n in the expansion of (1+ 2x + 3x^2 + 4x^3 + …..)^(1/2)

Find the coefficient of x^7 in the expansion of (1+2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7)^10

If |x|<1, then find the coefficient of x^n in the expansion of (1+2x+3x^2+4x^3+)^(1//2)dot

If the coefficients of x^-2 and x^-4 the expansion of (x^(1/3) +1/(2x^(1/3)))^18 , are m and n respectively, then m/n is equal to

The coefficient of x^n in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4!)..)^(2) when n is odd

In the expansion of (1-2x+3x^2 -4x^3+…."to")^4 coefficient of x^2 is