Home
Class 11
MATHS
If((n),(r )) "denotes " ""^nCr then (...

If`((n),(r )) "denotes " ""^nC_r then `
(a) Evalutae : `2^(15)((30),(0))((30),(1))-2^(14)((30),(1))((29),(14))+2^(13)((30),(2))((28),(13)).......-((30),(15))((15),(0))`
( b) Prove that : `Sigma_(r=1)^(n) ((n-1),(n-r))((n),(r))=((2n-1),(n-1))` ( c) Prove that : `((n),(r))((r),(k))=((n),(k))((n-r),(r-k))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (a) We need to evaluate the expression: \[ 2^{15} \binom{30}{0} \binom{30}{1} - 2^{14} \binom{30}{1} \binom{29}{14} + 2^{13} \binom{30}{2} \binom{28}{13} - \ldots - \binom{30}{15} \binom{15}{0} \] This expression can be simplified using the binomial theorem. The general term in the series can be recognized as: \[ (-1)^k 2^{15-k} \binom{30}{k} \binom{30-k}{15-k} \] for \( k = 0, 1, 2, \ldots, 15 \). This is equivalent to: \[ \sum_{k=0}^{15} (-1)^k 2^{15-k} \binom{30}{k} \binom{30-k}{15-k} \] By applying the binomial theorem, we can simplify this sum. The sum represents the coefficient of \( x^{15} \) in the expansion of: \[ (1 - 2x)^{30} \] Thus, we need to evaluate: \[ (1 - 2)^{30} = (-1)^{30} = 1 \] So, the final answer for part (a) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-M)|17 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (J-A)|5 Videos
  • Solutions of Triangle & Binomial Theorem

    ALLEN|Exercise EXERCISE (S-1)|16 Videos
  • SOLUTION AND PROPERTIES OF TRIANGLE

    ALLEN|Exercise All Questions|106 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Prove that ((n),(r))+2((n),(r-1))+((n),(r-2))=((n+2),(r))

Prove that : (""^(n)C_(r+1))/(""^(n)C_(r))=(n-r)/(r+1)

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that: n(n-1)(n-2)....(n-r+1)=(n !)/((n-r)!)

Prove that sum_(r=0)^n r(n-r)(^nC_ r)^2=n^2(^(2n-2)C_n)dot

Prove that: (i) (.^(n)P_(r))/(.^(n)P_(r-2)) = (n-r+1) (n-r+2)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Find the value of (Sigma_(r=1)^(n) 1/r)/(Sigma_(r=1)^(n) k/((2n-2k+1)(2n-k+1))) .

In a DeltaABC , prove that Sigma_(r=0)^(n)""^(n)C_(r)a^(r)b^(n-r) cos ( r B-(n-r)A)=c^(n) .

Deduce that: sum_(r=0)^n .^nC_r (-1)^r 1/((r+1)(r+2)) = 1/(n+2)