Home
Class 11
MATHS
If in a right angled triangle, a and b a...

If in a right angled triangle, a and b are the lengths of sides and c is the length of hypotenuse and `c-b ne 1, c+b ne 1`, then show that
`log_(c+b)a+log_(c-b)a=2log_(c+b)a.log_(c-b)a.`

Text Solution

AI Generated Solution

To solve the problem, we need to show that: \[ \log_{(c+b)} a + \log_{(c-b)} a = 2 \log_{(c+b)} a \cdot \log_{(c-b)} a \] ### Step 1: Start with the left-hand side (LHS) ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JM)|8 Videos

Similar Questions

Explore conceptually related problems

If in a right angled triangle, a\ a n d\ b are the lengths of sides and c is the length of hypotenuse and c-b!=1,\ c+b!=1 , then show that (log)_("c"+"b")"a"+(log)_("c"-"b")"a"=2(log)_("c"+"b")adot(log)_("c"-"b")adot

If in a right angled triangle, a\ a n d\ b are the lengths of sides and c is the length of hypotenuse and c-b!=1,\ c+b!=1 , then show that (log)_("c"+"b")"a"+(log)_("c"-"b")=2(log)_("c"+"b")adot(log)_("c"-"b")adot

If log(a+c)+log(a+c-2b)=2log(a-c) then

In a right angled triangle with sides a and b and hypotenuse c , the altitude drawn on the hypotenuse is x . Prove that a b=c x .

Given a^2+b^2=c^2&\ a .0 ; b >0; c >0,\ c-b!=1,\ c+b!=1,\ prove that : (log)_("c"+"b")a+(log)_("c"-"b")a=2(log)_("c"+"b")adot(log)_("c"-"b")a

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

The value of "log"_(b)a xx "log"_(c) b xx "log"_(a)c , is

If a, b, c are in G.P, then log_a x, log_b x, log_c x are in

If a, b, c are in G.P, then log_a x, log_b x, log_c x are in

A B C is a right triangle right-angled at C . Let B C=a ,\ \ C A=b ,\ \ A B=c and let p be the length of perpendicular from C on A B , prove that (i) c p=a b

ALLEN-BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION -ILLUSTRATIONS
  1. Solve for x: (1.25)^(1-x) gt (0.64)^(2(1+sqrt(x))

    Text Solution

    |

  2. Show that log(4)18 is an irrational number.

    Text Solution

    |

  3. If in a right angled triangle, a and b are the lengths of sides and c ...

    Text Solution

    |

  4. If the arcs of same length in two circles subtend angles of 60^(@) and...

    Text Solution

    |

  5. If sintheta+sin^(2)theta=1, then prove that cos^(12)theta+3cos^(10)the...

    Text Solution

    |

  6. 4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta)is equal to

    Text Solution

    |

  7. If sintheta=-1/2 and tantheta=1/sqrt(3) then theta is equal to,

    Text Solution

    |

  8. Prove that sqrt(3) " cosec "20^(@)-sec 20^(@)=4

    Text Solution

    |

  9. Prove that tan 70^(@)=cot70^(@)+2cot40^(@)

    Text Solution

    |

  10. If sin 2A=lambda sin 2B, prove that : (tan (A+B))/(tan(A-B)) = (lambda...

    Text Solution

    |

  11. (sin5theta+sin2theta-sin tehta)/(cos5theta+2cos3theta+2cos^(2)theta+co...

    Text Solution

    |

  12. Prove that: s in 12^0s in 48^0s in 54^0=1/8dot

    Text Solution

    |

  13. Prove that (2cos2A+1)/(2cos2A-1)=tan(60^0+A)tan(60^0-A)dot

    Text Solution

    |

  14. Prove that: tanA + tan(60^(@)+A) + tan(120^(@)+A)=3tan3A

    Text Solution

    |

  15. sin(671/2)^(@) + cos(671/2)^(@) is equal to A) 1/2sqrt(4+2sqrt(2)), ...

    Text Solution

    |

  16. The value of sin 78^@ - sin 66^@ - sin 42^@ + sin 6^@ is

    Text Solution

    |

  17. In a tringle ABC, sin A-cosB=cosC, then angle B, is

    Text Solution

    |

  18. If A+B+C =(3pi)/(2), then cos2A+cos2B+cos2C is equal to-

    Text Solution

    |

  19. Prove that 5costheta+3cos(theta+pi/3)+3 lies between -4a n d10.

    Text Solution

    |

  20. Find the maximum value of 1+sin(pi/4+theta) + 2cos(pi/4-theta).

    Text Solution

    |