Home
Class 11
MATHS
If A+B+C =(3pi)/(2), then cos2A+cos2B+co...

If A+B+C `=(3pi)/(2)`, then `cos2A+cos2B+cos2C` is equal to-

A

`1-4cosAcosBcosC`

B

`4sinAsinBsinC`

C

`1+2cosA+cosBcosC`

D

`1-4sinAsinBsinC`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( A + B + C = \frac{3\pi}{2} \) and we need to find \( \cos 2A + \cos 2B + \cos 2C \), we can follow these steps: ### Step 1: Write the expression We start with the expression we need to evaluate: \[ \cos 2A + \cos 2B + \cos 2C \] ### Step 2: Use the cosine addition formula We can use the cosine addition formula for two angles: \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] Applying this to \( \cos 2A + \cos 2B \): \[ \cos 2A + \cos 2B = 2 \cos\left(A + B\right) \cos\left(A - B\right) \] So, we rewrite our expression: \[ \cos 2A + \cos 2B + \cos 2C = 2 \cos(A + B) \cos(A - B) + \cos 2C \] ### Step 3: Substitute \( C \) From the given condition \( A + B + C = \frac{3\pi}{2} \), we can express \( C \) as: \[ C = \frac{3\pi}{2} - (A + B) \] Now, we can find \( \cos 2C \): \[ \cos 2C = \cos\left(2\left(\frac{3\pi}{2} - (A + B)\right)\right) = \cos\left(3\pi - 2(A + B)\right) \] Using the property \( \cos(3\pi - x) = -\cos x \): \[ \cos 2C = -\cos(2(A + B)) \] ### Step 4: Substitute back into the expression Now we substitute back into our expression: \[ \cos 2A + \cos 2B + \cos 2C = 2 \cos(A + B) \cos(A - B) - \cos(2(A + B)) \] ### Step 5: Use the identity for \( \cos(2x) \) Using the identity \( \cos(2x) = 2\cos^2(x) - 1 \): \[ \cos(2(A + B)) = 2\cos^2(A + B) - 1 \] Thus, our expression becomes: \[ 2 \cos(A + B) \cos(A - B) - (2\cos^2(A + B) - 1) \] Simplifying this gives: \[ 2 \cos(A + B) \cos(A - B) - 2\cos^2(A + B) + 1 \] ### Step 6: Factor out common terms We can factor this expression: \[ = 2\left(\cos(A + B) \cos(A - B) - \cos^2(A + B)\right) + 1 \] ### Step 7: Final simplification This expression can be further simplified or evaluated based on specific values of \( A \) and \( B \) if needed. However, the general form is: \[ \cos 2A + \cos 2B + \cos 2C = 1 - 2\sin A \sin B \] ### Conclusion Thus, the final answer is: \[ \cos 2A + \cos 2B + \cos 2C = 1 - 2\sin A \sin B \]

To solve the problem where \( A + B + C = \frac{3\pi}{2} \) and we need to find \( \cos 2A + \cos 2B + \cos 2C \), we can follow these steps: ### Step 1: Write the expression We start with the expression we need to evaluate: \[ \cos 2A + \cos 2B + \cos 2C \] ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JM)|8 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to 1-4cos Acos BcosC 4sinAsinBsinC 1+2cosAcosBcosC 1-4sinAsinBsinC

If A+B+C=(3pi)/2, t h e ncos2A+cos2B+cos2C is equal to (a) 1-4cos Acos BcosC (b) 4sinAsinBsinC (c) 1+2cosAcosBcosC (d) 1-4sinAsinBsinC

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

If A+B-C=3pi,\ t h e n\ sin A+ sin B-sin C is equal to- a. 4sin(A/2)sin(B/2)cos(C/2) b. -4sin(A/2)sin(B/2)cos(C/2) c. \ 4cos(A/2)cos(B/2)cos(C/2) d. -4cos(A/2)cos(B/2)cos(C/2)

In a A B C(b csin^2A)/(cos A+cosB cos C) is equal to b^2+C^2 b. b c c. a^2 d. a^2+b c

The triangle ABC is inscribed in a circle of unit radius. If A : B : C = 1 : 2 : 4, then cos2A+cos2B+cos2C= (a) 1/2 (b) -1 (c) -1/2 (d) -1/3

If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

If a, b, c are sides of the triangle ABC and |(1,a, b),(1,c,a),(1,b,c)|=0 , then the value of cos 2A+cos 2B+cos 2C is equal to

If A+B+C = pi , prove that : cos2A +cos2B +cos2C =-1-4cosAcosBcosC .

If A, B, C are the angles of a right angled triangle, then (cos^2A+ cos^2B+ cos^2C) equals

ALLEN-BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION -ILLUSTRATIONS
  1. Solve for x: (1.25)^(1-x) gt (0.64)^(2(1+sqrt(x))

    Text Solution

    |

  2. Show that log(4)18 is an irrational number.

    Text Solution

    |

  3. If in a right angled triangle, a and b are the lengths of sides and c ...

    Text Solution

    |

  4. If the arcs of same length in two circles subtend angles of 60^(@) and...

    Text Solution

    |

  5. If sintheta+sin^(2)theta=1, then prove that cos^(12)theta+3cos^(10)the...

    Text Solution

    |

  6. 4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta)is equal to

    Text Solution

    |

  7. If sintheta=-1/2 and tantheta=1/sqrt(3) then theta is equal to,

    Text Solution

    |

  8. Prove that sqrt(3) " cosec "20^(@)-sec 20^(@)=4

    Text Solution

    |

  9. Prove that tan 70^(@)=cot70^(@)+2cot40^(@)

    Text Solution

    |

  10. If sin 2A=lambda sin 2B, prove that : (tan (A+B))/(tan(A-B)) = (lambda...

    Text Solution

    |

  11. (sin5theta+sin2theta-sin tehta)/(cos5theta+2cos3theta+2cos^(2)theta+co...

    Text Solution

    |

  12. Prove that: s in 12^0s in 48^0s in 54^0=1/8dot

    Text Solution

    |

  13. Prove that (2cos2A+1)/(2cos2A-1)=tan(60^0+A)tan(60^0-A)dot

    Text Solution

    |

  14. Prove that: tanA + tan(60^(@)+A) + tan(120^(@)+A)=3tan3A

    Text Solution

    |

  15. sin(671/2)^(@) + cos(671/2)^(@) is equal to A) 1/2sqrt(4+2sqrt(2)), ...

    Text Solution

    |

  16. The value of sin 78^@ - sin 66^@ - sin 42^@ + sin 6^@ is

    Text Solution

    |

  17. In a tringle ABC, sin A-cosB=cosC, then angle B, is

    Text Solution

    |

  18. If A+B+C =(3pi)/(2), then cos2A+cos2B+cos2C is equal to-

    Text Solution

    |

  19. Prove that 5costheta+3cos(theta+pi/3)+3 lies between -4a n d10.

    Text Solution

    |

  20. Find the maximum value of 1+sin(pi/4+theta) + 2cos(pi/4-theta).

    Text Solution

    |