Home
Class 11
MATHS
Find the maximum value of 1+sin(pi/4+the...

Find the maximum value of `1+sin(pi/4+theta) + 2cos(pi/4-theta)`.

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \(1 + \sin\left(\frac{\pi}{4} + \theta\right) + 2\cos\left(\frac{\pi}{4} - \theta\right)\), we can follow these steps: ### Step 1: Rewrite the expression using trigonometric identities Using the sine and cosine addition formulas: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] we can rewrite the expression as: \[ 1 + \left(\sin\left(\frac{\pi}{4}\right)\cos(\theta) + \cos\left(\frac{\pi}{4}\right)\sin(\theta)\right) + 2\left(\cos\left(\frac{\pi}{4}\right)\cos(\theta) + \sin\left(\frac{\pi}{4}\right)\sin(\theta)\right) \] ### Step 2: Substitute the values of \(\sin\left(\frac{\pi}{4}\right)\) and \(\cos\left(\frac{\pi}{4}\right)\) Since \(\sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\), we substitute these values: \[ 1 + \left(\frac{1}{\sqrt{2}}\cos(\theta) + \frac{1}{\sqrt{2}}\sin(\theta)\right) + 2\left(\frac{1}{\sqrt{2}}\cos(\theta) + \frac{1}{\sqrt{2}}\sin(\theta)\right) \] ### Step 3: Simplify the expression Combining the terms, we have: \[ 1 + \frac{1}{\sqrt{2}}\cos(\theta) + \frac{1}{\sqrt{2}}\sin(\theta) + \sqrt{2}\cos(\theta) + \sqrt{2}\sin(\theta) \] This can be rewritten as: \[ 1 + \left(\frac{1}{\sqrt{2}} + \sqrt{2}\right)\cos(\theta) + \left(\frac{1}{\sqrt{2}} + \sqrt{2}\right)\sin(\theta) \] ### Step 4: Factor out the common terms Let \(k = \frac{1}{\sqrt{2}} + \sqrt{2}\): \[ 1 + k(\cos(\theta) + \sin(\theta)) \] ### Step 5: Find the maximum value of \(\cos(\theta) + \sin(\theta)\) The maximum value of \(\cos(\theta) + \sin(\theta)\) can be found using the identity: \[ \cos(\theta) + \sin(\theta) = \sqrt{2}\sin\left(\theta + \frac{\pi}{4}\right) \] The maximum value of \(\sin\) is 1, so: \[ \max(\cos(\theta) + \sin(\theta)) = \sqrt{2} \] ### Step 6: Substitute back to find the maximum value of the expression Thus, the maximum value of the original expression is: \[ 1 + k\sqrt{2} = 1 + \left(\frac{1}{\sqrt{2}} + \sqrt{2}\right)\sqrt{2} \] Calculating \(k\sqrt{2}\): \[ k\sqrt{2} = \left(\frac{1}{\sqrt{2}} + \sqrt{2}\right)\sqrt{2} = 1 + 2 = 3 \] Therefore, the maximum value of the expression is: \[ 1 + 3 = 4 \] ### Final Answer The maximum value of \(1 + \sin\left(\frac{\pi}{4} + \theta\right) + 2\cos\left(\frac{\pi}{4} - \theta\right)\) is **4**.

To find the maximum value of the expression \(1 + \sin\left(\frac{\pi}{4} + \theta\right) + 2\cos\left(\frac{\pi}{4} - \theta\right)\), we can follow these steps: ### Step 1: Rewrite the expression using trigonometric identities Using the sine and cosine addition formulas: \[ \sin(a + b) = \sin a \cos b + \cos a \sin b \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JM)|8 Videos

Similar Questions

Explore conceptually related problems

The maximum value of 1+sin(pi/4+theta)+2cos(pi/4-theta) for real values of theta is

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

For theta in(0,pi/2) , the maximum value of sin(theta+pi/6)+cos(theta+pi/6) is attained at theta =

The maximum value of the expression sin theta cos^(2)theta(AA theta in [0, pi]) is

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

Find the maximum and minimum value of 5cos theta+3sin(theta+(pi)/(6)) for all real values of theta . .

If tan theta=-3/4 and pi/2 < theta < pi, find the values of sin theta,cos theta and cot theta .

Statement -1: If (pi)/(12)lethetale(pi)/(3), then sin(theta-(pi)/(4))sin(theta-(7pi)/(12))sin(theta+(pi)/(12))"lies between"-(1)/(4sqrt2)and 1/4. Statement-2: The value of sin thetasin((pi)/(3)-theta)sin((pi)/(3)+theta)is 1/4sin3theta.

The maximum value of cos^(2)(cos(33pi + theta))+sin^(2)(sin(45pi+theta)) is

Find maximum and minimum values of 2sin(theta+(pi)/(6))+sqrt(3)cos(theta-(pi)/(6))

ALLEN-BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION -ILLUSTRATIONS
  1. Solve for x: (1.25)^(1-x) gt (0.64)^(2(1+sqrt(x))

    Text Solution

    |

  2. Show that log(4)18 is an irrational number.

    Text Solution

    |

  3. If in a right angled triangle, a and b are the lengths of sides and c ...

    Text Solution

    |

  4. If the arcs of same length in two circles subtend angles of 60^(@) and...

    Text Solution

    |

  5. If sintheta+sin^(2)theta=1, then prove that cos^(12)theta+3cos^(10)the...

    Text Solution

    |

  6. 4(sin^(6)theta+cos^(6)theta)-6(sin^(4)theta+cos^(4)theta)is equal to

    Text Solution

    |

  7. If sintheta=-1/2 and tantheta=1/sqrt(3) then theta is equal to,

    Text Solution

    |

  8. Prove that sqrt(3) " cosec "20^(@)-sec 20^(@)=4

    Text Solution

    |

  9. Prove that tan 70^(@)=cot70^(@)+2cot40^(@)

    Text Solution

    |

  10. If sin 2A=lambda sin 2B, prove that : (tan (A+B))/(tan(A-B)) = (lambda...

    Text Solution

    |

  11. (sin5theta+sin2theta-sin tehta)/(cos5theta+2cos3theta+2cos^(2)theta+co...

    Text Solution

    |

  12. Prove that: s in 12^0s in 48^0s in 54^0=1/8dot

    Text Solution

    |

  13. Prove that (2cos2A+1)/(2cos2A-1)=tan(60^0+A)tan(60^0-A)dot

    Text Solution

    |

  14. Prove that: tanA + tan(60^(@)+A) + tan(120^(@)+A)=3tan3A

    Text Solution

    |

  15. sin(671/2)^(@) + cos(671/2)^(@) is equal to A) 1/2sqrt(4+2sqrt(2)), ...

    Text Solution

    |

  16. The value of sin 78^@ - sin 66^@ - sin 42^@ + sin 6^@ is

    Text Solution

    |

  17. In a tringle ABC, sin A-cosB=cosC, then angle B, is

    Text Solution

    |

  18. If A+B+C =(3pi)/(2), then cos2A+cos2B+cos2C is equal to-

    Text Solution

    |

  19. Prove that 5costheta+3cos(theta+pi/3)+3 lies between -4a n d10.

    Text Solution

    |

  20. Find the maximum value of 1+sin(pi/4+theta) + 2cos(pi/4-theta).

    Text Solution

    |