Home
Class 11
MATHS
Prove that tan alpha+2 tan 2 alpha+2^(...

Prove that
`tan alpha+2 tan 2 alpha+2^(2)tan2^(2)alpha+..............+2^(n-1)tan2^(n-1)alpha+2^(n)cot2^nalpha=cotalpha`

Text Solution

Verified by Experts

We know `tantheta=cottheta-2cot2theta`…..(i)
Putting `theta=alpha,2alpha,2^(2)alpha,…………….in (ii)`, we get
`tanalpha = (cotalpha-2cot2alpha)`
`2(tan2alpha)= 2(cot2alpha-2cot2^(2)alpha)`
`2^(2)(tan2^(2)alpha) = 2^(2)(cot2^(2)alpha-2cot2^(2)alpha)`
Adding,
`tanalpha+2tan2alpha+2^(2)tan^(2)alpha+...........+2^(n-1)tan2^(n-1)alpha=cotalpha-2^(n)cot2^(n)alpha`
`therefore tanalpha+2tan2alpha+2^(2)tan^(2)alpha+............+2^(n-1)tan2^(n-1)alpha=cotalpha-2^(n)alpha`
`therefore tanalpha+2tan2alpha+2^(2)tan^(2)alpha+2^(2)tan^(2)alpha+...............+2^(n-1)tan2^(n-1)alpha+2^(n)cot 2^(n)alpha=cotalpha`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF|20 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 1|2 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Prove that tan alpha+2 tan 2 alpha+2^(2)tan^(2)alpha+..............+2^(n-1)tan2^(n-1)alpha+2^(@)cot2^(@)alpha=cotalpha

Prove: (2)/( cot alpha tan 2 alpha ) = 1 - tan ^(2) alpha.

The value of tan alpha +2tan(2alpha)+4tan(4alpha)+...+2^(n-1)tan(2^(n-1)alpha)+2^ncot(2^nalpha) is

Prove that cot alpha - tan alpha =2 cot 2 alpha.

Prove that: tan^2theta=tan^2alpha ,theta=npi+-alpha,n in Z

Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

Prove that: t a nalpha+2tan2alpha+4tan4alpha+8cot8alpha=cotalpha

prove that : tan(alpha)+2 tan(2alpha) +4(tan4alpha)+8cot(8alpha) = cot(alpha)

tan alpha + 2 tan 2alpha + 4 tan 4 alpha + 8 cot 8 alpha =

1/(tan3alpha-tanalpha)-1/(cot3alpha-cotalpha)=cot2alpha