Home
Class 11
MATHS
If A,B,C and D are angles of quadrilater...

If `A,B,C and D` are angles of quadrilateral and `sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(16)`, prove that `A=B=C=D=pi/2`

Text Solution

Verified by Experts

`(2sinA/2sinB/2)(2sinC/2sinD/2)=`
`rArr {cos(A-B)/2 - cos(A+B)/2}{cos(C-D)/2-cos(C+D)/2}=1`
Since, `A+B=2pi-(C+D)`, the above equation becomes,
`rArr {cos(A-B)/2 -cos(A+B)/2}{cos(C-D)/2 + cos(A+B)/2}=1`
`rArr cos^(2)(A+B)/2 -cos(A+B)/2{cos(A-B)/2-cos(C-D)2}+1-cos(A-B)/2cos(C-D)/2=0`
This is a quadratic equation in `cos(A+B)/2` which has real roots.
`rArr {cos(A-B)/2-cos(C-D)/2}^(2)-4{1-cos(A-B)/2.cos(C-D)} ge 0`
`(cos(A-B)/2 +cos(C-D)/2)^(2) ge 4`
`rArr cos(A-B)/2 + cos(C-D)/2 ge`, Now both `cos(A-B)/2` and `cos(C-D)/2 le 1`
`rArr cos(A-B)/2=1` and `cos(C-D)/2=1`
`rArr (A-B)/2 =0 = (C-D)/2`
`A=B, C=D`
Similarly, A=C,B=D `rArr A=B=C=D=pi/2`
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF|20 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 1|2 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If A,B,C and D are angles of quadrilateral and sin(A)/(2)sin(B)/(2)sin(C)/(2)sin(D)/(2)=(1)/(4) , prove that A=B=C=D= pi//2

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

If A,B,C,D are angles of a quadrilateral, then sin A + sin (B+ C + D) = (i) 0 (ii) 1 (iii) 2 (iv) None of these

If A,B,C,D are the angles of a quadrilateral, prove that "cos"1/2(A+B)+"cos"1/2(C+D)=0 .

In a triangle ABC sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

If A,B,C are angles of a triangle, then 2sin(A/2)cosec (B/2)sin(C/2)-sinAcot(B/2)-cosA is (a)independent of A,B,C (b) function of A,B (c)function of C (d) none of these

If A,B,C be the angles of a triangle, prove that (sin(B+C)+sin(C+A)+sin(A+B))/(sin(pi+A)+sin(3pi+B)+sin(5pi+C))=-1

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any quadrilateral ABCD, prove that: i) sin(A+B)+sin(C+D)=0 ii) cos(A+D)-cos(B+C)=0

If a,b,c are in HP, then prove that sin ^(2) ""(A)/(2), sin ^(2) ""(B)/(2), sin ^(2) ""(C )/(2) are also in HP.