Home
Class 11
MATHS
If x ne (npi)/2, n in I and (cosx)^(sin^...

If `x ne (npi)/2, n in I` and `(cosx)^(sin^(2)x-3sinx+2)=1`, then find the general solutions of x.

Text Solution

AI Generated Solution

To solve the equation \((\cos x)^{(\sin^2 x - 3\sin x + 2)} = 1\) under the condition that \(x \neq \frac{n\pi}{2}\) where \(n\) is an integer, we can follow these steps: ### Step 1: Rewrite the Equation We know that any number raised to the power of 0 is equal to 1. Therefore, we can set the exponent equal to 0: \[ \sin^2 x - 3\sin x + 2 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF|20 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 1|2 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If x!=(npi)/2,\ n\ in I and ( cosx )^(sin ^2x-3sinx+2)=1, then find the general solution of xdot

If x!=(kpi)/2,\ k in I and (cosx)^( sin^2x-3sinx+2 =1 , then all solutions of x

If |cosx|^(sin^2x-3/2sinx+1/2)=1 then x=

If x ne (n pi)/(2), n in Z " and "("cos"x)^("sin"^2 x-3 "sin" x + 2) = 1 " Then," x =

If cosx−sinx≥1 and 0≤x≤2π, then the solution set for x is __

Evaluate: int(cosx)/(sin^2x+4sinx+5)dx

If A=[{:(cosx,-sin x),(sinx, cosx):}] and A+A'=I_(2) , then the general value of x is

Evaluate: int(cosx)/(sin^2x+4sinx+5)\ dx

If y=(sin3x)/(sinx), x ne npi , then:

If f(x)=|[x^n, n!, 2; cosx, cos((npi)/2), 4; sinx ,sin((npi)/2), 8]| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot