Home
Class 11
MATHS
If 4^(log(2)2x) = 36, then find x....

If `4^(log_(2)2x) = 36`, then find x.

Text Solution

AI Generated Solution

To solve the equation \( 4^{\log_{2}(2x)} = 36 \), we can follow these steps: ### Step 1: Rewrite the base We know that \( 4 \) can be expressed as \( 2^2 \). Therefore, we can rewrite the equation as: \[ (2^2)^{\log_{2}(2x)} = 36 \] ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 1|2 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 2|4 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JM)|8 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

x^((log_2 x)+4)=32 then find x.

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If sum log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6, then find the value of x.

If 3^(2x+1)*4^(x-1)=36 then find the value of x

If 2x^(log_(4)3)+3^(log_(4)x)= 27 , then x is equal to

y=2^(1/((log)_x4) , then find x in terms of y.

If log_(sqrt(27))x = 2 (2)/(3) , find x.

If log_(2)(x-2)ltlog_(4)(x-2) ,, find the interval in which x lies.

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

Given log_(x)25 - log_(x) 5 = 2 - "log"_(x) (1)/(125) , find x.