Home
Class 11
MATHS
Evaluate: 2^(log(3)5)-5^(log(3)2)...

Evaluate: `2^(log_(3)5)-5^(log_(3)2)`

Text Solution

Verified by Experts

0
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 1|2 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 2|4 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JM)|8 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

Simplify: 2^((log)_3 5)-5^((log)_3 2)

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

Solve the equation: 2log_(3)x+log_(3)(x^(2)-3)=log_(3)0.5+5^(log_(5)(log_(3)8)

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

The domain of the function: f(x)=log_(3) [-(log_(3) x)^(2)+5 log_3x-6]" is :"

Value of [log_(e^3)5^8 - log_(e^3)2^8] equals to

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

The value of x satisfying the equation root(3)(5)^(log_(5)5^(log_(5)5^(log_(5)5^(log_(5)((x)/(2)) = 3, is