Home
Class 11
MATHS
if 1/log3 pi +1/log4 pi >x then x be...

if `1/log_3 pi +1/log_4 pi >x` then x be

A

2

B

3

C

`3.5`

D

`pi`

Text Solution

AI Generated Solution

To solve the inequality \( \frac{1}{\log_3 \pi} + \frac{1}{\log_4 \pi} > x \), we will follow these steps: ### Step 1: Rewrite the logarithms Using the change of base formula, we can rewrite the logarithms: \[ \frac{1}{\log_3 \pi} = \frac{\log \pi}{\log 3} \quad \text{and} \quad \frac{1}{\log_4 \pi} = \frac{\log \pi}{\log 4} \] Thus, we can rewrite the expression: ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 1|2 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 2|4 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JM)|8 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If (1)/("log"_(3) pi) + (1)/("log"_(4) pi) gt x , then the greatest integral value of is

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

The value of 1/(log_3pi)+1/(log_4pi) is

If log_(0.5) sin x=1-log_(0.5) cos x, then the number of solutions of x in[-2pi,2pi] is

Suppose 3 sin ^(-1) ( log _(2) x ) + cos^(-1) ( log _(2) y) =pi //2 " and " sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi//6 , then the value of x^(-2) + y^(-2) equals

Suppose 3 sin^(-1) ( log _(2) x) + cos^(-1) ( log _(2) y) =pi //2 and sin^(-1) ( log _(2) x ) + 2 cos^(-1) ( log_(2) y) = 11 pi //6 . then the value of 1/x^(-2) + 1/y^(-2) equals .

If 1, log_3sqrt(3^(1-x)+2), log_3 (4*3^x-1) are in AP then x equals

Statement-1: "log"_(10)x lt "log"_(pi) x lt "log"_(e) x lt "log"_(2) x Statement-2: x lt y rArr "log"_(a) x gt "log"_(a) y " when " 0 lt a lt 1

The domain of the function f(x) = log_(3/2) log_(1/2)log_pi log_(pi/4) x is

If 1,log_9(3^(1-x)+2), log_3(4*3^x-1) are in A.P then x equals to