Home
Class 11
MATHS
log(10)(log(2)3) + log(10)(log(3)4) + ……...

`log_(10)(log_(2)3) + log_(10)(log_(3)4) + …………+log_(10)(log_(1023)1024)` simplies to

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{10}(\log_{2}3) + \log_{10}(\log_{3}4) + \ldots + \log_{10}(\log_{1023}1024) \), we can follow these steps: ### Step 1: Rewrite the expression using properties of logarithms We know that the sum of logarithms can be expressed as the logarithm of the product. Therefore, we can rewrite the expression as: \[ \log_{10}(\log_{2}3 \cdot \log_{3}4 \cdot \ldots \cdot \log_{1023}1024) \] ### Step 2: Simplify each logarithm Using the change of base formula, we can express each logarithm in the product as: \[ \log_{b}a = \frac{\log_{10}a}{\log_{10}b} \] Thus, we can rewrite the product: \[ \log_{2}3 = \frac{\log_{10}3}{\log_{10}2}, \quad \log_{3}4 = \frac{\log_{10}4}{\log_{10}3}, \quad \ldots, \quad \log_{1023}1024 = \frac{\log_{10}1024}{\log_{10}1023} \] ### Step 3: Combine the products Putting it all together, we have: \[ \log_{2}3 \cdot \log_{3}4 \cdots \log_{1023}1024 = \frac{\log_{10}3}{\log_{10}2} \cdot \frac{\log_{10}4}{\log_{10}3} \cdots \frac{\log_{10}1024}{\log_{10}1023} \] Notice that in this product, all terms will cancel except for the first denominator and the last numerator: \[ = \frac{\log_{10}1024}{\log_{10}2} \] ### Step 4: Substitute back into the logarithm Now we substitute this back into our logarithm: \[ \log_{10}\left(\frac{\log_{10}1024}{\log_{10}2}\right) \] ### Step 5: Simplify further We know that \( 1024 = 2^{10} \), thus: \[ \log_{10}1024 = \log_{10}(2^{10}) = 10 \cdot \log_{10}2 \] Substituting this into our expression gives: \[ \log_{10}\left(\frac{10 \cdot \log_{10}2}{\log_{10}2}\right) = \log_{10}(10) \] ### Step 6: Final simplification Finally, we know that: \[ \log_{10}(10) = 1 \] Thus, the entire expression simplifies to: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (S-1)|41 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JA)|16 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 12|1 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

log_(2)[log_(4)(log_(10)16^(4)+log_(10)25^(8))] simplifies to :

log4^2_10 + log4_10

Find the real solutions to the system of equations log_(10)(2000xy)-log_(10)x.log_(10)y=4 , log_(10)(2yz)-log_(10)ylog_(10)z=1 and log_(10)zx-log_(10)zlog_(10)x=0

Prove that : (log_(2)10)(log_(2)80)-(log_(2)5)(log_(2)160)=4 .

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)

If log_(2)(log_(4)(x))) = 0, log_(3)(log_(4)(log_(2)(y))) = 0 and log_(4)(log_(2)(log_(3)(z))) = 0 then the sum of x,y and z is-

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2) (where a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

If log_(10)m=(1)/(2) , then log_(10)10m^(2)=

ALLEN-BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION -EXERCISE (O-1)
  1. If logy x +logx y=7, then the value of (logy x)^2+(logx y)^2, is

    Text Solution

    |

  2. if log2(log3(log4x))=0 and log3(log4(log2y))=0and log3(log2(log3z))=0 ...

    Text Solution

    |

  3. log(10)(log(2)3) + log(10)(log(3)4) + …………+log(10)(log(1023)1024) simp...

    Text Solution

    |

  4. If log(a)b+log(b)c+log(c)a vanishes where a, b and c are positive real...

    Text Solution

    |

  5. Let x= 2^(log 3) and y=3^(log 2) where base of the logarithm is 10,the...

    Text Solution

    |

  6. The sum of all the solutions to the equation 2logx-log(2x-75)=2:

    Text Solution

    |

  7. Let W,X,Y and Z be positive real number such that log(W.Z)+log(W.Y)=...

    Text Solution

    |

  8. If sinθ+cosθ=1 , then what is the value of sinθcosθ ?

    Text Solution

    |

  9. The number N = 6 log(10) 2+ log(10) 31 lies between two successive in...

    Text Solution

    |

  10. Number of real solution(s) of the equation |x-3|^(3x^2-10x+3)=1 is :

    Text Solution

    |

  11. The solution set of the inequality log(5/8)(2x^(2)-x-3/8) ge1 is-

    Text Solution

    |

  12. Solution set of the inequality, 2-log (2) (x ^(2) + 3x) ge 0 is:

    Text Solution

    |

  13. If log(1/3)((3x-1)/(x+2)) is less than unity, then 'x' must lie in the...

    Text Solution

    |

  14. If s in x=cos^2x ,\ then write the value of cos^2x\ (1+cos^2x)dot

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. The value of "cos"^(2)48^(@)-"sin"^(2)12^(@) is

    Text Solution

    |

  17. The expression (sin8thetacostheta-sin6thetacos3theta)/(cos2thetacosthe...

    Text Solution

    |

  18. Prove that: (sin(A-C)+2s inA+"sin"("A"+"C")/("sin"("B"-"C")+2sinB+"sin...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. If A=tan6^(@)tan42^(@)and B=cot66^(@)cot78^(@),then

    Text Solution

    |