Home
Class 11
MATHS
Q. The value of is equal sum(k=1)^13(1/(...

Q. The value of is equal `sum_(k=1)^13(1/(sin(pi/4+(k-1)pi/6)sin(pi/4+k pi/6))` is equal

A

`3-sqrt(3)`

B

`2(3-sqrt(3))`

C

`2(sqrt(3)-1)`

D

`2(2+sqrt(3))`

Text Solution

AI Generated Solution

To solve the given summation problem, we need to evaluate: \[ S = \sum_{k=1}^{13} \frac{1}{\sin\left(\frac{\pi}{4} + (k-1)\frac{\pi}{6}\right) \sin\left(\frac{\pi}{4} + k\frac{\pi}{6}\right)} \] ### Step 1: Rewrite the terms in the summation We start by rewriting the sine terms in the summation. We can express the sine terms using the angle addition formula. ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JM)|8 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (S-1)|41 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

sin(9pi)/14sin(11pi)/14sin(13pi)/14 is equal to

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of sum_(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

sin^(-1)(cos((5pi)/4)) is equal to

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

sin^(-1)(sin ((7pi)/6))

("cos"^(4)(pi)/(24)-"sin"^(4)(pi)/(24)) equals :

If the value of the integral I=int_((pi)/(4))^((pi)/(3))" max "(sinx, tanx)dx is equal to ln k, then the value of k^(2) is equal to

sum_(k=0)^5(1)/(sin[(K+1)theta]sin[(K+2)theta]) can be equal to