Home
Class 11
MATHS
The equation 2cos^(2)(x/2) sin^2x=x^(2)+...

The equation `2cos^(2)(x/2) sin^2x=x^(2)+x^(-2), 0 lt x^(-2), 0 lt x le pi/2` has

A

one real solutions

B

more than one real solutions

C

no real solutions

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \cos^2\left(\frac{x}{2}\right) \sin^2(x) = x^2 + x^{-2} \) for \( 0 < x \leq \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the Left-Hand Side We start with the left-hand side of the equation: \[ 2 \cos^2\left(\frac{x}{2}\right) \sin^2(x) \] Using the identity \( \sin(x) = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \), we can rewrite \( \sin^2(x) \): \[ \sin^2(x) = \left(2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right)\right)^2 = 4 \sin^2\left(\frac{x}{2}\right) \cos^2\left(\frac{x}{2}\right) \] Now substituting this back into the left-hand side: \[ 2 \cos^2\left(\frac{x}{2}\right) \cdot 4 \sin^2\left(\frac{x}{2}\right) \cos^2\left(\frac{x}{2}\right) = 8 \cos^4\left(\frac{x}{2}\right) \sin^2\left(\frac{x}{2}\right) \] ### Step 2: Set the Equation Now we set the left-hand side equal to the right-hand side: \[ 8 \cos^4\left(\frac{x}{2}\right) \sin^2\left(\frac{x}{2}\right) = x^2 + x^{-2} \] ### Step 3: Analyze the Right-Hand Side The right-hand side \( x^2 + x^{-2} \) can be rewritten as: \[ x^2 + \frac{1}{x^2} = \frac{x^4 + 1}{x^2} \] This expression is always greater than or equal to 2 for \( x > 0 \) (by AM-GM inequality). ### Step 4: Evaluate the Left-Hand Side Next, we need to evaluate the left-hand side. Notice that: - \( \cos^2\left(\frac{x}{2}\right) \) and \( \sin^2\left(\frac{x}{2}\right) \) are both non-negative for \( 0 < x \leq \frac{\pi}{2} \). - The maximum value of \( 8 \cos^4\left(\frac{x}{2}\right) \sin^2\left(\frac{x}{2}\right) \) occurs when \( x = \frac{\pi}{2} \). ### Step 5: Check the Boundaries At \( x = \frac{\pi}{2} \): \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, \[ 8 \left(\frac{1}{\sqrt{2}}\right)^4 \left(\frac{1}{\sqrt{2}}\right)^2 = 8 \cdot \frac{1}{4} \cdot \frac{1}{2} = 1 \] ### Step 6: Compare Both Sides Now we compare: \[ 1 \quad \text{(LHS at } x = \frac{\pi}{2}\text{)} \quad \text{with} \quad x^2 + x^{-2} \quad \text{(which is } \geq 2 \text{ for } x > 0\text{)} \] Since \( 1 < 2 \), it shows that the left-hand side cannot equal the right-hand side. ### Conclusion Thus, the equation \( 2 \cos^2\left(\frac{x}{2}\right) \sin^2(x) = x^2 + x^{-2} \) has **no solutions** in the interval \( 0 < x \leq \frac{\pi}{2} \).
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (S-1)|41 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise EXERCISE (JA)|16 Videos
  • BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise DO YOURSELF 12|1 Videos
  • BASIC MATHS LOGARITHIM TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION

    ALLEN|Exercise ILLUSTRATIONS|39 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ALLEN|Exercise All Questions|1 Videos

Similar Questions

Explore conceptually related problems

If 0 lt x lt pi/2 then

The equation 2 "cos"^(2)((x)/(2))"sin"^(2) x = x^(2) + (1)/(x^(2)), 0 le x le (pi)/(2) has

The equation 2 "cos"^(2)((x)/(2))"sin"^(2) x = x^(2) + (1)/(x^(2)), 0 le x le (pi)/(2) has

If 0 lt x lt pi /2 then

Number of solutions of the equation cos^(4) 2x+2 sin^(2) 2x =17 (cos x + sin x)^(8), 0 lt x lt 2 pi is

The equation 2sin^(2)((x)/(2))cos^(2)x=x+(1)/(x),0 lt x le(pi)/(2) has

Number of solutions of the equation cos^4(2x)+2sin^2(2x) =17(cosx+sinx)^8 , 0 lt x lt 2π is

The solution of the equation "cos"^(2) x-2 "cos" x = 4 "sin" x - "sin" 2x (0 le x le pi) , is

Number of solutions of equation 2"sin" x/2 cos^(2) x-2 "sin" x/2 sin^(2) x=cos^(2) x-sin^(2) x for x in [0, 4pi] is

Find the number of solutions of the equation 2 sin^(2) x + sin^(2) 2x = 2 , sin 2x + cos 2x = tan x in [0, 4 pi] satisfying the condition 2 cos^(2) x + sin x le 2 .

ALLEN-BASIC MATHS,LOGARITHIM, TRIGNOMETRIC RATIO AND IDENTITIES AND TRIGNOMETRIC EQUATION -EXERCISE (O-1)
  1. If A=tan6^(@)tan42^(@)and B=cot66^(@)cot78^(@),then

    Text Solution

    |

  2. If a=b cos((2pi)/3)= c cos((4pi)/3), then write the value of a b+b c+c...

    Text Solution

    |

  3. If t a nalpha=1/(1+2^(-x))a n dt a nbeta=1/(1+2^(x+1)), then write the...

    Text Solution

    |

  4. If tan alpha + tanB + tanC = tanA tanB tanC, then

    Text Solution

    |

  5. If f(x)=(sin 3x)/(sin x), x != n pi , then find range of f(x)

    Text Solution

    |

  6. If cosx+cosy+cosalpha=0 and sinx + siny + sinalpha=0, then cot((x+y)/2...

    Text Solution

    |

  7. The vlaue of sin""(pi)/(14)sin""(3pi)/(14)sin""(5pi)/(14)sin""(7pi)/(1...

    Text Solution

    |

  8. Maximum and minimum value of 2sin^(2)theta-3sintheta+2 is-

    Text Solution

    |

  9. For theta in(0,pi/2) , the maximum value of sin(theta+pi/6)+cos(theta+...

    Text Solution

    |

  10. Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos ...

    Text Solution

    |

  11. The general solution of tan3x =1 is

    Text Solution

    |

  12. The number of solutions of the equation tan^2x-sec^10x+1=0 in (0,10) i...

    Text Solution

    |

  13. The solution set of (5+4 "cos" theta) (2 "cos" theta +1) =0 in the int...

    Text Solution

    |

  14. If 0 le x le 3 pi , 0 le y le 3 pi and cos x * sin y=1 , then find t...

    Text Solution

    |

  15. The number of ordered pairs (alpha, beta) where alpha, beta in (-pi, p...

    Text Solution

    |

  16. The set of value of theta satisfying the inequation 2 sin^(2) thet...

    Text Solution

    |

  17. The number of solutions of the pair of equations 2s in^2theta-cos2thet...

    Text Solution

    |

  18. The equation 2cos^(2)(x/2) sin^2x=x^(2)+x^(-2), 0 lt x^(-2), 0 lt x le...

    Text Solution

    |

  19. The number of real solutions of the equation sin(e^(x)) = 5^(x)+5^(-x)...

    Text Solution

    |

  20. The number of solutions of the equation sinx=x^(2)+x+1 is-

    Text Solution

    |