Home
Class 11
PHYSICS
If vecA= 3hati+2hatj and vecB= 2hati+ 3h...

If `vecA= 3hati+2hatj and vecB= 2hati+ 3hatj-hatk`, then find a unit vector along `(vecA-vecB)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector along \( \vec{A} - \vec{B} \), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{A} = 3\hat{i} + 2\hat{j} \] \[ \vec{B} = 2\hat{i} + 3\hat{j} - \hat{k} \] ### Step 2: Calculate \( \vec{A} - \vec{B} \) We need to subtract vector \( \vec{B} \) from vector \( \vec{A} \): \[ \vec{A} - \vec{B} = (3\hat{i} + 2\hat{j}) - (2\hat{i} + 3\hat{j} - \hat{k}) \] Distributing the negative sign: \[ = 3\hat{i} + 2\hat{j} - 2\hat{i} - 3\hat{j} + \hat{k} \] Now, combine the like terms: \[ = (3 - 2)\hat{i} + (2 - 3)\hat{j} + 1\hat{k} \] \[ = 1\hat{i} - 1\hat{j} + 1\hat{k} \] Thus, we have: \[ \vec{A} - \vec{B} = \hat{i} - \hat{j} + \hat{k} \] ### Step 3: Find the magnitude of \( \vec{A} - \vec{B} \) The magnitude of a vector \( \vec{R} = x\hat{i} + y\hat{j} + z\hat{k} \) is given by: \[ |\vec{R}| = \sqrt{x^2 + y^2 + z^2} \] For \( \vec{R} = \hat{i} - \hat{j} + \hat{k} \): \[ |\vec{R}| = \sqrt{(1)^2 + (-1)^2 + (1)^2} \] \[ = \sqrt{1 + 1 + 1} = \sqrt{3} \] ### Step 4: Calculate the unit vector The unit vector \( \hat{r} \) in the direction of \( \vec{R} \) is given by: \[ \hat{r} = \frac{\vec{R}}{|\vec{R}|} \] Substituting the values: \[ \hat{r} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \] This can be expressed as: \[ \hat{r} = \frac{1}{\sqrt{3}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k} \] ### Final Answer Thus, the unit vector along \( \vec{A} - \vec{B} \) is: \[ \hat{r} = \frac{1}{\sqrt{3}}\hat{i} - \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k} \]

To find a unit vector along \( \vec{A} - \vec{B} \), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{A} = 3\hat{i} + 2\hat{j} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 10|3 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 11|5 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 8|2 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

If vecA= 6hati- 6hatj+5hatk and vecB= hati+ 2hatj-hatk , then find a unit vector parallel to the resultant of veca & vecB .

If veca=3hati+4hatj-5hatk and vecb=7hati-3hatj+6hatk find a unit vector along (veca+vecb)xx(veca-vecb) .

If veca=hati+2hatj-hatk and vecb=3hati+hatj-hatk find a unit vector int direction of veca-vecb .

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

Given veca+vecb=2hati," if "vecb=3hatj-hatk then find out vector veca :-

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

If vecA= hati+2hatj+3hatk, vecB=-hati+hatj + 4hatk and vecC= 3hati-3hatj-12hatk , then find the angle between the vector (vecA+vecB+vecC) and (vecAxx vecB) in degrees.